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• An agent-based model for renewable energy auctions is proposed.
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ABSTRACT
We propose a simple approach to auctions based on statistical mechanics tools and evolutionary
game theory to assess the impact of the competition level on the prices. A sealed-bid, pay-as-bid
scheme with several rounds is considered. At each round bidders place their bids following a normal
distribution with fixed variance and mean value � characteristic of each bidder. Bidders learn from
round to round, adjusting myopically their � according to their performance in the round. We study
the resulting dynamics using agent-based simulations, and we identify a phase transition depending on
the competition level of the auction. Our model is in contrast with the classical literature on auctions
which assumes bidders act purely rationally. Despite the simplicity of the model, it can explain the
increasing and decreasing trends of the outcomes of real auctions, like the wind onshore and solar
PV energy auctions held in Germany from 2017 to 2022, and the solar PV auction held in Argentina
between 2016 and 2018.

1. Introduction
Auctions are a very popular mechanism to allocate all

kinds of goods (art, natural resources like renewable en-
ergies, telecommunication licenses, any kind of ’stuff’ on
internet,...). They are quite complex to study since they can
be thought of as games with incomplete information: players
(i.e., bidders) try to bid to maximize their utility in a context
where they usually do not know with certainty the value
the other participants (and possible themselves) attribute to
the auctioned goods and so ignore their bidding behaviour.
Moreover, beyond the classical ascending auction widely
used in fine art auctions where the auctioneer raises the
price until only one participant remains and is declared the
winner, there exist multiple auction formats specifying the
bidding process, who wins and how much the participants
pay, presenting various pros and cons from the bidders’ and
the auctioneer’s point of view.

There is a rich mathematical theory of auctions mainly
developed by researchers coming from economic disciplines
(see, e.g., Klemperer (2004) and Krishna (2002)) like the
former Nobel prizes W. Vickrey (1996), R. Myerson (2007),
P. Milgrom and R. Wilson (2020). Bidders are assumed
to bid rationally so as to maximize their expected utility.
The main questions are then the existence of an equilibrium
(i.e., how rational bidders are expected to bid), the expected
revenue of the auctioneer, and the allocation of the goods to
the bidders who most value them or not.
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In this paper we are especially motivated by renewable
energy (RE) auctions, which are procurement auctions. In
classical auctions (like fine art auctions), the auctioneer sells
a good and bidders state the price at which they are willing
to acquire it. In a RE auction (and in general procurement
auctions) the opposite happens: the auctioneer, usually a
government or a public institution, offers to buy a given
amount of energy and bidders offer to sell to the auctioneer
a certain volume of energy at a given price. Bidders want to
sell energy for a high price while the auctioneer wants to buy
it for a low price.

Auctions are becoming the most widely used mechanism
to allocate RE, like solar photo-voltaic, wind, geothermal,
or hydro. Indeed more than a hundred countries had used
auctions at least once by the end of 2018 (IRENA (2019)),
and the European Union made auctions mandatory to grant
support from member states governments since 2017 Sz-
abó, Bartek-Lesi, Dézsi, Diallo, Mezösi, Kitzing,Woodman,
Fitch-Roy, del Rio, Resch, von Blücher, Wigand, Menzies
and Anatolitis (2020). The use of RE auctions led to an
overall significant decrease of the price of energy (IRENA
(2019); Szabó et al. (2020)).

Beside the abstract auction format specifying the bidding
process, the winner determination and the payment rule,
other design parameters can impact the success of anRE auc-
tion like, e.g., the ceiling price (a cap on the maximum bid
such that any higher bid is discarded), or pre-qualifications
and requisites that the bidders must fulfill. Combined to
those abstract design parameters, local and global politico-
socio-economic factors have a decisive impact on the results
of the auction. For instance, the economic characteristics
of the bidders like their cost of energy production, or the
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possibility of obtaining loans which is key in developing
economies, are affected due to the country’s risk qualifi-
cations and credit access. Due to their obvious high socio-
economic impact and their complexity, RE auctions are
currently the subject of an intense research, and we refer the
interested reader to the survey del Río and Kiefer (2021);
Kruger, Eberhard andKyle (2018);MEDREG (2019); Szabó
et al. (2020);Wigand, Förster and Silvana Tiedemann (2016)
and the references therein.

RE auctions can be held in repeated rounds (like e.g.,
Germany, Argentina and Brazil) thus giving the possibility
to the participants of learning and adapting their behaviour
from round to round to improve their future pay-off. However
the possibly large number of participants and their hetero-
geneity usually pose serious difficulty in using theoretical
results from evolutionary game theory. To circumvent this
difficulty, agent-based models (ABM) are increasingly used
to study some aspects of auctions (Anatolitis and Welisch
(2017); Azadeh, Ghaderi, Nokhandan and Sheikhalishahi
(2012); Lundberg (2019); Welisch (2018)). Indeed their
bottom-up approach is well suited to aggregate microscopic
behaviour of heterogeneous agents up to their macroscopic
consequences. In fact, their flexibility makes them a very
attractive tool to study the implications of particular policy
decision, see e.g. Castro, Drews, Exadaktylos, Foramitti,
Klein, Konc, Savin and van den Bergh (2020); Holtz and
Chappin (2019); Hansen, Liu and Morrison (2019); Holtz,
Schnülle, Yadack, Friege, Jensen, Thier, Viebahn and Chap-
pin (2020); Niamir, Filatova, Voinov and Bressers (2018)
about the use of ABM to model climate-energy policies.
Focusing on the use of ABM to study auctions, the authors
in Anatolitis and Welisch (2017) and Lundberg (2019) are
strongly motivated by the wind and solar auctions that have
been held in Germany since 2017. They both propose ABM
to understand different aspects of these auctions: the hetero-
geneity of the participants with respect to their economic
size Anatolitis and Welisch (2017), and the influence of the
payment rule, pay-as-bid or uniformLundberg (2019). These
models greatly differ in their complexity and their underly-
ing assumption concerning the participants. On one hand the
model Anatolitis and Welisch (2017) has many parameters
to account for the heterogeneity of the participants mainly
with respect to their production capacity and cost. Bidders
are moreover assumed to be highly rational: they determine
their behaviour optimizing their expected discounted total
payoff from the current round to the last one. On the other
hand, themodel in Lundberg (2019) is quite simple with only
two parameters, one for the learning process of the bidders
and the other relative to their evaluation of the auctioned
energy source. Bidders in this model learn in a myopic way
as opposed to Anatolitis and Welisch (2017). Both models
lead to interesting insights and policy consequences, and
they are the main motivation for the present work. Notice
that as in any model with bounded rationality, there is no
guarantee that agents learn the Nash equilibrium, so they
can reach a suboptimal equilibrium, or keep on changing
strategies without converging to a stationary state.

This ABM approach is widely used in the study of
complex systems in physics, and physicists have applied
tools from statistical mechanics to study several social and
economic models. In these models, individuals or firms are
reduced to simple dummy particles, and random encounters
between them are identified with shocks during which they
exchange energy (in this case, any quantity of interest from
an economic or social point of view). These random micro-
scopic shocks then lead to macroscopic observable changes
at the whole population level. Notice that individuals in these
models are usually not rational: they do not behave to max-
imize an expected payoff, on the contrary they always apply
the same rule to exchange some kind of energy. Although
clearly simplistic, this approach has obtained great success
in reproducing empirical facts with simple models amenable
to analysis. For instance V. Pareto observed at the end of the
19th century Pareto (1896) that the distribution of wealth
in a given society is remarkably stable through time and
space. It was shown (see, e.g., Chakrabarti, Chakraborti,
Chakravarty and Chatterjee (2013)) that very simple -and
not rationally motivated- wealth exchange rules between
members of a society can lead to wealth distributions sharing
similar characteristics to those observed empirically, see also
Pinasco, Cartabia and Saintier (2018) were such a result
can be obtained with slightly rational individuals. Notice
also that experiments show that humans do not always
behave in a purely rational way (Kagel and Levin (2014)).
This statistical mechanics approach to Economy and Social
Sciences (Castellano, Fortunato and Loreto (2009)) gave rise
to two fast growing areas, Sociophysics and Econophysics
(see Sen and Chakrabarti (2014); Slanina (2013)). On the
other hand, a strong mathematical formalism was built to
describe these phenomena in terms of kinetic equations, see
Bellomo (2008); Aylaj, Bellomo, Gibelli and Reali (2020);
Pareschi and Toscani (2013) and the references therein.

It is well known that a high number of participants is
an important factor to have a competitive auction and obtain
low energy prices (see e.g. Klemperer (2002)). As Bulow
and Klemperer wrote in Bulow and Klemperer (1994), No
amount of bargaining power is as valuable to the seller
as attracting one extra bona fide bidder. In the context
of RE auctions, the work Wigand et al. (2016) examines
the impact of the level of competition, among other fac-
tors, in the success and failure of several RE auctions held
across the world. More theoretical considerations can be
found in Kreiss (2016) where the author first highlights the
importance of the composition of the bidders population
to properly assess the competition level, and then study
the impact of various auction parameters on the level of
competition from a qualitative point of view. It would be
thus desirable to know how competitive an auction must be
to obtain low prices, and in general, to assess quantitatively
the importance of the competition level in the outcome of the
auction and test Bulow and Klemperer dictum in the context
of RE auctions.
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The main objective of this paper is to answer this ques-
tion. Our starting point are the wind on-shore energy auc-
tions held in Germany from 2017 to 2022. They are par-
ticularly suitable for our puprpose due to the fluctuation of
the competition level, and we can observe a strong and clear
correlation between the competition levels and the resulting
prices. To deepen our analysis and obtain a quantitative
estimation of the impact of the competition level, we then
propose a model of auction taking place in several rounds.
By incorporating ideas from evolutionary game theory, par-
ticipants will be able to adapt (learn) from round-to-round
but only in a limited myopic way, thus following the econo-
physics philosophy and taking into account bidders do not
act in general purely rationnally. We show in particular that
the level of competition in the auction is a key parameter of
the model in the sense it determines both bidders’ long-time
behaviour and the evolution of the prices.

The paper is organized as follows. We first present in the
next section the wind on-shore auctions held in Germany
since 2017 and highlight the influence of the participation
level as our main motivation for the present paper. We then
describe our model in Section §3. The resulting dynamics
is studied in Section §5 through agent-based simulations.
Though very simple, we show in Section §7 that our model
is able to reproduce with good accuracy the outcomes of real
auctions like the German wind on-shore, German solar PV
and Argentine solar PV auctions. We conclude the paper in
Section §8 analyzing policy consequences of our findings.

2. Renewable energy auctions in Germany
Following the Guidelines on state aid for environmental

protection and energy 2014–2020, by the European Com-
mission (2014), the public support to renewable energy in
Germany is determined by auctions since 2015. From 2015
to 2019, a total of 17.25 GW of renewable energy capacity
has been added in 40 auction rounds mainly involving PV
solar and wind off- and on-shore. A detailed description
of the schemes and their outcomes can be found in Sach,
Lotz and von Blücher (2019). The German experience has
been the subject of numerous publications (Anatolitis and
Welisch (2017); Batz Liñeiro and Müsgens (2021); Grashof,
Berkhout, Cernusko and Pfennig (2020); Kácsor (2021);
Lundberg (2019); Sach et al. (2019); Szabó et al. (2020);
Welisch (2018); Welisch and Kreiss (2019)) where several
aspects like the price obtained, the realization rate, the
impact of the payment rule.... have been studied using agent-
based modelling and game theory. The large numbers of
rounds that have been held and the public availability of
data from the webpage of the German government Federal
Ministry for Economic Affairs and Climate Action certainly
contributes to this popularity.

We will focus in this paper on the wind on-shore auc-
tions. During the year 2017, the German government im-
plemented a set of rules aiming at fostering the participa-
tion of community energy projects (BEG, Bürgerenergiege-
sellschaften) defined as wind cooperatives with at least ten

private individuals. Project size of BEG were limited but
benefited of substantial advantages compared to other partic-
ipants such as lower material pre-qualification requirement,
reduced penalty in case of non-realization, a longer realiza-
tion period. Moreover BEG were awarded with the highest
awarded bid instead of their own bid price. A detailed study
of this special mixed auction scheme was done in Lundberg
(2019).

Figure 1: Evolution from round to round of the competition
level � (grey) de�ned in (1), the ceiling price (dotted green
line) and the mean price (dashed blue line) for the wind
on-shore auction in Germany based on data available at
Bundesnetzagentur.

We show in Figure 1 the evolution from round to round of
the average winning price (blue slashed curve) form 2017 to
2022. We can observe the prices dropped down during 2017
and started from 2018 rising up steadily to reach the ceiling
price (red dotted curve). Certainly the abandonment of the
BEG special conditions played a role in the abrupt change of
price trend.

To gain insights, it is useful (see Figure 3 in Szabó et al.
(2020)) to plot on the same figure as a grey shadow the
competition level � defined as the ratio of the total volume
offered by bidders over the total auctioned volume, namely

� = total offered volume
total auctioned volume . (1)

We can observe a strong correlation between the price evo-
lution and the level of competition. In particular it seems
that when the level of competition is below 200% (i.e., the
auctioned volume is greater than half the offered volume),
then the price increases, whereas it decreases when the level
of competition is higher than 200%. The same effect can
also be observed in the German solar PV auctions shown
in Figure 2, though less clearly. Indeed until Feb. 2018, and
from March 2019. until Oct. 2019, the price decreases and
the competition level stays above 200%. The two changes in
the trend of the prices occur in Feb. 2018 and March 2019
where the competition level pass below 2.

To assess the impact of the competition level � on the
outcomes and the possible threshold at � = 2, we propose in
the following a simple agent-based model of auctions.
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Figure 2: Evolution from round to round of the competition
level � (grey) de�ned in (1), the ceiling price (dotted green line)
and the mean price (dashed blue line) for the solar PV auction
in Germany based on data available at Bundesnetzagentur.

3. Model description
We consider a sealed-bid auction taking place in several

rounds t = 1,… , T involving the same N bidders. Denote
c1, ..., cN their cost.

A round t of the auction is organized as follows:
Step 1 The auctioneer publicly announces the total auctioned

volume Vt and the ceiling price CPt of the round
Step 2 Bidding process: each bidder i submits a sealed bid

bi, the price at which he or she is willing to provide a
volume v of energy. Bidders are all assumed to submit
the same volume v, and we suppose for simplicity that
Vt is a multiple of v. There are then Nw,t ∶= Vt∕vwinners at round t.
The bid bi is drawn at random from a normal distri-
bution N(�i, �2). Notice bi − ci is then the mark-up
(or profit) of bidder i, and �i − ci its expected value.
If bidder i’s bid is greater than the ceiling price, i.e.
bi > CPt, then to have an admissible bid, we put
bi ∶= CPt. If bidder i’s bid is less than his/her cost,
i.e. bi < ci, then bidder i abandons the round since
it will not be profitable. The mean bid �i will changefrom round to round as explained in the learning step
below. The variance �2 is assumed to be the same for
all bidders through the whole auction.

Step 3 Determination of the winners: the auctioneer sorts the
bids b1, ..., bN in ascending order. The bidders who
submitted the lowestNw,t bids are the winners.

Step 4 Learning: bidder i updates their parameter �i to �′ifirst calculating the expected relative markup as (�i −
ci)+∕(CPt − ci). It represents his/her expected profit
upon winning but scaled relatively to the maximum
possible profit. Here x+ = max{x, 0} is the positive
part of a real number x. Notice the expected relative
markup belongs to [0, 1]. Bidder i then updates it
adding +
 if he/she won or −
 otherwise. Here 
 > 0
is the learning parameter, the same for every bidder
and round. Eventually bidder i computes�′i scaling the

relative markup back to the interval [ci, CPt+1] with
CPt+1 the ceiling price of the next round:

�′i ∶=

⎧

⎪

⎨

⎪

⎩

ci +
( (�i − ci)+
CPt − ci

+ 

)

(CPt+1 − ci) if bidder i won,
ci +

( (�i − ci)+
CPt − ci

− 

)

(CPt+1 − ci) if bidder i lost.
(2)

This rule models a myopic behaviour in the sense that
bidders lower or increase their relative mark-up only
taking into account how well they performed in the
round, thus reinforcing good behaviour and penaliz-
ing bas ones. The reinforcement of actions leading
to good outcomes is a robust properties observed in
experimental psychology on both human and animal
learning which has been succesfully used in games
and economic literature - see e.g. the seminal paper
Roth and Ido (1995). This idea is by now very popular
in algorithmic game theory (see e.g. the multiplicative
weight algorithm to obtain no-regret algorithm - chap.
17 in Roughgarden (2016)) and computation (see e.g.
the clasical book S. and G. (2018)).

We summary the workflow of a round in the flow chart
shown in Figure 3.

Figure 3: Flow chart of a round in our model.

Notice that no communication among bidders is allowed
during the whole auction. Bids are sealed and bidders only
know their own performance in the round. A bidder’s learn-
ing process is thus only affected by the other bidders through
their result.

In the next sections we study the dynamics via agent-
based simulations focusing on the evolution from round to
round of the distribution of � among the bidders and the
winning bids. In particular we will be most interested in
studying the impact of the competition level �t of round tdefined in (1) and of the bidding noise � on the long time
evolution of the distribution of � in the bidders population.
Notice that since the total auctionned and offered volume
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are Vt and Nv respectiveley and the number of winners is
Nw,t = Vt∕v we can rewrite �t as

�t ∶= N∕Nw,t, (3)
To do so it will be convenient from a theoretical point of
view to assume 
 small. Indeed 
 being the learning rate
mainly fixes the time scale of the dynamic. Assuming it
small means that bidders are conservative changing their
behaviour smoothly. Observable effects will then only ap-
pear when T is large. This is of course unrealistic but will
prove very useful concerning the impact of the competition
level. Moreover taking 
 small also presents theoretical
advantages. Indeed a mean field approximation allows to
write down a partial differential equation for the evolution of
the distribution of the parameter � in the bidders population.
The rigorous derivation of this equation and its analysis
can be found in Kind, Pinasco and Saintier (2021), since
the study of this equation is non-trivial. Although the use
of differential equations is quite unusual in the study of
auctions (but not in evolutionary game theory), we believe
that it is a valuable tool which can bring deep insights into
agent-based models going far beyond simulations. Indeed
the methodology we just described is widely used in the
physic and applied mathematics communities to study social
and economic phenomena (see e.g. Pareschi and Toscani
(2013); Pérez-Llanos, Pinasco and Saintier (2021, 2020);
Pérez Pérez, Pinasco, Saintier and Silva (2018); Vazquez,
Saintier and Pinasco (2020); Saintier, Pablo Pinasco and
Vazquez (2020)). In the present case, an analysis of this
equation provides a theoretical explanation of the threshhold
� = 2 we will observe numerically in the next section.

4. Model results
In this section we present agent-based simulations of

the dynamics described in the previous section. In all the
simulations we took N = 1000 bidders. Since we are
mainly interested in the bidding dynamics, we suppose for
simplicity that the bidders have all the same cost 0, i.e.
c1 = ... = cN = 0, and that the ceiling price is CPt = 1 for
any round t. The updating rule (2) of bidders’� parameter
then simplifies to

�′i ∶=

{

((�i)+ + 
) if bidder i won,
((�i)+ − 
) if bidder i lost. (4)

Bidders’� parameters are initially drawn at random indepen-
dently and uniformly in [0, 1]. We set the learning parameter
to 
 = 0.001. We run the dynamic for T = 1200 rounds.

We begin by taking � = 0, so that bidders bid exactly
their �. To assess the influence of the competition level
�, we assume it constant throughout the auction. We show
in Figure 4 the evolution from round-to-round of the �
parameter of the N bidders (Left panel), and the evolution
of the mean winning bid (Right panel) for two competition
level values: � = 4 (Top) and � = 1.25 (Bottom).

We can observe that bidders coordinate in the sense
that they tend to have all the same value of the � param-
eter (up to random fluctuation of order 
), say �∞. This
is quite surprising since, as mentioned before, no explicit
communication between bidders is allowed in our model.
This common value then converges either to the ceiling price
1 when � = 1.25 or to the cost 0 when � = 4. The same
qualitative behaviour is observed for other initial distribution
of the � parameter among the bidders (see Appendix).

Further simulations varying the value of � and the initial
condition show that bidders always coordinate and the limit
�∞ of the common � value is always, up to fluctuation of
order 
 , very close to 0 or 1 depending on the value of �.
Suppose for instance that initially the bidders are divided
into three groups of proportion 1∕4, 1∕4, and 1∕2, with
� parameter uniformly distributed at random in [0, 0.25],
[0.4, 0.6], and [0.65, 1], respectively. We show in Figure 5
the evolution of the� of each bidder and of themeanwinning
bid for two different competition level values � = 4 and
� = 1.25 and three different noise level � = 0, � = 0.1
and � = 0.5. We can clearly see that bidders coordinate and
that �∞ is close to 0 when � = 1.25, and to 1 when � = 4.

To further study the dependence of �∞ w.r.t �, we plot in
Figure 6 the final common value �∞ as a function of �. The
values were averaged over 10 runs. We can clearly observe
a transition at � = 2: when � < 2, the final � value is close
to 1, whereas it is close to 0 for � > 2.

We now examine the influence of the noise �. Recall that
participants submit bids b drawn from a normal distribution
b ∼ N(�, �2) where � is specific to each participant and
changes from round to round, and � is the same for all
participants. We can thus think of b as � perturbed by a
noise N(0, �2). We show in Figure 7 the evolution from
round to round of the � parameter of the bidders and of
the mean winning bid for the two competition level values
� = 4 and � = 1.25, and for two different noise values:
� = 0.1 (top), � = 0.5 (bottom). We can observe a
similar qualitative behaviour as for � = 0 in the sense that
participants still coordinate their � and the common final
value � depends on the level of competition with a sharp
transition at � = 2. Figure 6 shows the final common value
of � as a function of the competition level � for different
values of �. It confirms that � = 2 is the threshold value
whatever the noise level (notice however that noise seems to
delay bidder’s coordination).

Our agent model thus allows to precisely quantify the
importance of the competition level � showing a sharp
threshold at � = 2 dividing two opposite tendencies: below,
prices go down to the cost, and above, prices go up to the
ceiling price. The threshold value is moreover indifferent
to the bidding noise � thus suggesting it could be observed
in real auctions. We examine this issue in the next section,
when we compare the results of our model with the German
wind on-shore and solar PV auctions, and Argentine solar
PV auctions.

Let us briefly mention that our model can be studied
mathematically by using a mean field approximation with
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Figure 4: Evolution from round-to-round of the � values of bidders (left), and of the mean winning bid (right) for two constant
competition level values: � = 4 (top) and � = 1.25 (bottom).

Figure 5: Evolution from round to round of the � values of bidders (blue curves - columns 1 and 3), and of the mean winning bid
(black curve - columns 2 and 4) for two competition level values � = 4 (columns 1 and 2) and � = 1.25 (columns 3 and 4), and
for three di�erent values of �: � = 0 (top) � = 0.1 (middle) and � = 0.5 (bottom). Parameter � is initially uniformly distributed
among the bidders as in the text.
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Figure 6: Final common value of � as a function of the
competition level � for di�erent values of noise �.

partial differential equations. Indeed, when � = 0, the
distribution ft(�) of the �’s in the bidders population at time
t can be shown to solve the following equation
)ft(�)
)t

+ )
)�

[

(2P0[ft](�) − 1)ft(�)
]

= 0 in (0, 1)

in the limitN → +∞ and 
 → 0. Here

P0[ft](�) =

⎧

⎪

⎨

⎪

⎩

1Ft(�)≤p +
p − ft([0, �))
ft({�})

1�=F−1
t (p) � ∈ (0, 1],

1ft({0})≤p +
p

ft({0})
1ft({0})>p � = 0,

is the probability a bidder with � wins, Ft(�) is the pro-
portion of bidders with parameter less than or equal to �,
and p ∶= 1∕�. This term translates the learning rule (4)
and thus drives the dynamics in (0, 1). Let us note that the
phase transition is clearly observed in the term 2P0[ft] − 1.
Informally, the population reaches a consensus about the true
value �, that drives the population to the lower bound if the
probability that a bidder wins is P0[ft] < 1∕2, and to the
ceiling price if P0[ft] > 1∕2. The rigorous derivation of
this equation and its analysis can be found in Kind et al.
(2021). Although the use of differential equations is quite
unusual in the study of auctions (but not in evolutionary
game theory), we believe that it is a valuable tool which
can bring deep insights into agent-based models going far
beyond simulations. Indeed the methodology we just de-
scribed is widely used in the physic and applied mathematics
communities to study social and economic phenomena (see
e.g. Pareschi and Toscani (2013); Pérez-Llanos et al. (2021,
2020); Pérez Pérez et al. (2018); Vazquez et al. (2020);
Saintier et al. (2020))

5. Comparison of our model with real
auctions.
To assess the strengths and limitations of our model, we

consider three real auctions, Germany wind on-shore and
solar PV auctions and Argentine solar PV auction. For each
of these auctions w examine to what extent our model is able
to reproduce the global trends of the evolution of prices. The
choice of these auctions is motivated by two reasons: the

availability of data, and the number of rounds of the scheme
to allow the learning process of our model to take place.
5.1. German wind on-shore and solar PV auctions.

Concerning the German wind on-shore auction, we al-
ready observed in Section §2 a strong correlation between
the competition level � and the prices. More precisely we
noticed that the value � = 2 seemed to determine the
evolution of the prices, which agrees with the phae transioon
our model exhibits at � = 2. We now want to see if the
evolution of prices between 2017 and 2020 can reprouced by
our model. With the real competition level and ceiling price
of the Germany wind auction, we simulated the agent-based
model with N = 100 bidders. We assume that their cost
is uniformly distributed between 2 and 7, and a bidder with
cost c has an initial mark-up chosen uniformly at random
between 2 and 5. The best fit was obtained using a learning
rate 
 = 0.8. We show in Figure 8 the mean winning bid in
the simulation (solid curve) together with the real result of
the auction (dashed curve).

We can observe a globally good agreement between
the output of the simulation and the real data in the sense
that the simulated prices follow the trends of the real ones.
This is true for the 24 rounds between 2017 and 2022 with
two exceptions around February 2020 and February 2021.
They might be explained first by the covid epidemic and the
general economic lock-down that took place from February
2020 which generated unusual conditions. Around February
2022, we can first notice a one round larg between the
real and simulated prices and also that the prices fall is
much more pronounced in the simulation. At the same time,
just before Feb. 2020 and Feb. 2022, we can notice the
brutal raise of the competition level, which resulted in the
prices falling in the simulation but not in reality. A possible
explanation would be that some bidders may have insights
on the competition level of the next round, either anticipating
the volume the government will auction or that some bidders
will not participate.

As for the German wind on-shore auction, the data
for the solar PV auction are available on the website the
German government Federal Ministry for Economic Affairs
and Climate Action. However, contrary to the wind on-
shore auction, the total submitted volume is not available,
thus preventing the computation of the competition level.
We obtained it from Figure 3 in Szabó et al. (2020) which
explaines why we limit our study to the years 2015-2019.
The best fit was obtained supposing that participants have
all a cost equal to 4 with a � initially uniformly distributed
between 9 and the ceiling price of the first round, and the
learnning rate is 
 = 0.15. Real and simulated prices are
shown in Figure 9, together with the real ceiling price and
competition level. Again we can appreciate that the simulate
prices globally follow the tendency of the real prices, though
the variations in the real prices are more pronouned that in
the simulation. They both went down from the start in April
2015 to Feb. 2018 when the competition level was clearly
greater than 2. From June 2018 to Feb. 2019, the real and
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Figure 7: Evolution from round to round of the � values of bidders (blue curves - columns 1 and 3), and of the mean winning
bid (black curve - columns 2 and 4) for two constant competition level values � = 4 (columns 1 and 2) and � = 1.25 (columns
3 and 4), and for two di�erent values of �: � = 0.1 (top) and � = 0.5 (bottom). Parameter � is initially uniformly distributed
among the bidders.

Figure 8: Evolution from round to round of the competition
level � de�ned in (1), the ceiling price (red dotted line), the
real mean winning bid (dashed light blue line) for the wind
on-shore auctions in Germany (based on data available at
Bundesnetzagentur), and the mean winning bid price in our
model (solid blue line) for the parameters given in the text.

simulated prices exhibit opposite tendencies (the real price
rose, the simulated fell) though the relative price variation
over this period is low. This might also be caused by some
bidders having insights about the future level of competition.
Then from Feb. 2018 on, both the real and simulated prices
show the same trend.
5.2. Argentine solar PV auction.

In order to increase the share of RE in the energymix, the
Argentine government lauched in 2017 an auction scheme
called RenovAr which consisted of 3 rounds (called round
1, 1.2 and 2) of technology-specific sealed-bid auction. The
RenovAr scheme is generally considered a success in view
of the low prices that were obtained, a consequence of the
high level of participation. In fact the overbidded round 1
led to the creation of an initially unplanned round 1.5. The

Figure 9: Evolution from round to round of the competition
level � de�ned in (1), the ceiling price (red dotted line),
the real mean winning bid (dashed light blue line) for the
solar PV auctions in Germany (based on data available at
Bundesnetzagentur), and the mean winning bid price in our
model (solid blue line) for the parameters given in the text.

implementation of a guarantee mechanism efficiently helped
to mitigate the perceived risks associated with the economic
and political instabiity of the country. An extensive account
of the Argentine energy market and a description of this
scheme can be found in Menzies, Marquardt and Spieler
(2019).

We will concentrate on the solar PV auction for which
we had access to detailed data (Prioletta (2022)). We report
in Table 1 the ceiling price, auctionned and bidded volume
of round 1, 1.5 and 2. Figure 10 shows the competition
level (grey), ceiling price (green dotted line) and mean price
(dashed light blue) that were obtained.

A close examination of the bidders population reveals
(Prioletta (2022)) that the participants of Renovar Solar PV
can be split into four groups according to the range of volume
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bidded (see Table 2). We report in Tables 3 and 4 the mean
and variance of the LCOE and of the bids of the 1st round.

Round 1.5 was not initially planned and was created in
response to the largely overbidded round 1 where the level
of competition was equal to 600 % (i.e. the bidded volume
was approximately 6 times higher that the auctionned vol-
ume). However only the loosers of round 1 were allowed to
participate to round 1.5. We cannot therefore use our model
to simulate the three rounds at once. Instead we run it round
by round explaining the adjustment we made at each round.
Notice that we retain the core idea of our model, namely
all the bidders are myopic and update their relative mark-up
according to their result in the round.

We iniciate the simulation of the ABM model choosing
independently at random the cost and the volume bidded
of each of the 50 participants of round 1 depending on
his group using the following distribution: bidders’costs are
drawn from a normal distribution with mean and variance
given in Tables 3, and the volume bidded is chosen uniformly
between the minimum and maximum value given in Table
2). Bidders’� parameter are chosen independently at random
from a normal distribution with mean and variance given in
Tables 4. Steps 2 (bidding step) and 3 (winner determination)
of our model are then executed as explained in section 2. We
chose � = 0 since the generation of the �’s is already noisy.
All bidders then adjust their relative mark-up (see step 4).
In all the simlation we took a learning rate 
 = 0.26 since
it resulted in a the better fit. This ends the simulation of
round 1. Following the rule applied in Renover, the ceiling
price of round 1.5 was taken as the mean winning bid of
round 1. As explained before, only the loosers of round
1 could participate to round 1.5. Their cost was drawn at
random from a normal distribution with mean and variance
as given in Table 3, and their � was then computed as
in formula (2) using the relative mark-up updated at the
end of round 1. We then proceeded with Step 2, 3 and the
updating of the relative mark-up. The ceiling price of round
2 was computed as the mean between the mean winning
bid of round 1 and 1.5 as in Renover. The cost of the 50
participants was drawn at random from a normal distribution
with mean and variance given in Tables 3, and participants
� parameter was computed using the updated relative mark-
up. New participants were added: 10 in group 1, 3 in group
2, 1 in group 3, and 13 in group 4, whose cost were drawn
from a normal as before, and whose � were chosen unformly
between their cost and the ceiling price of round 2. We then
proceeded with step 2 and 3 of the simulation.

After averaging over 100 runs, we obtained the simulated
ceiling price (dashed green line) and mean prices (solid blue
line) shown in Figure 10. We can appreciate the very good
agreement between the simulation and the reality both for
the ceiling price and the prices.

Table 1

Ceiling price, auctionned and bidded volume in RenovAr Solar
PV.

Round Ceiling price Auctionned Vol. Bidded vol.

1 90 400 2304.21
1.5 59.75 517 876.98
2 57.04 817 3989

Table 2

Minimum and maximum bidded volume by groups in RenovAr
Solar PV.

Bidded volume Group 1 Group 2 Group 3 Group 4

min 2 21 80 100
max 20 50 80 100

Figure 10: Evolution from round to round of the competition
level � de�ned in (1), the ceiling price (real and simulated),
and the prices (real and simulated) for the solar PV auctions
in Argentina.

6. Exploring policies to ensure a high enough
level of competition.
We saw in the previous section that our model can repro-

duce the trends of the prices in real auctions thus confirming
that a a ratio of at least 2 to 1 between the total volume
offered by bidders and the auctionned volume is critical to
obtain low prices. Several regulations can be implemented
toward that objective whose impact can be assessed with our
model.

The government can first act on the level of competition
indirectly by promoting participation with the help, for in-
stance, of fiscal incentive, mechanism to mitigate perceived
risks as in RenovAr, or reduced finantial guarantees like the
advantages small energy producers benefited from until the
end of 2017 in the German scheme.

The government can also act directly on the level of
competition decreasing the auctionned volume. For instance
on 22 May 2019, Ukraine adopted a law to introduce auc-
tions as the main instrument to deploy renewable energy.

N. Saintier, J. Marenco, M. Kind, J. P. Pinasco: Preprint submitted to Elsevier Page 9 of 13



Competition level as a key parameter

Table 3

LCOE (mean and variance) for each round of Renovar Solar PV for each group of bidders.

Round
Group 1 Group 2 Group 3 Group 4

Mean Variance Mean Variance Mean Variance Mean Variance

1 61.1 35.2 62.3 63 52.0 9.8 51.9 59.8
1.5 54.8 3.3 53.9 12.9 49.7 1.2 56.8 0.9
2 47.1 20.7 48.4 22.8 45.4 54.1 45.7 22.4

Table 4

Mean and variance of the bids received in the round 1 of Renovar Solar PV for each group of bidders.

Group 1 Group 2 Group 3 Group 4
Mean Variance Mean Variance Mean Variance Mean Variance

Bid 80.3 75.3 83.4 81.9 74.6 155.5 71.8 138.3

According to Anatolitis and Grundlach (2020) Ukrainian
authority thought of implementing a scheme in which the
total awarded capacity may not exceed 80% of the total
volume offered by the bidders. This is quite an unusual rule
which is explicitly aimed at increasing competition among
bidders. In our framework, if in a given round a volume V
was initially put in auction, applying this rule means that the
effectively auctionned volume is V = Nv × 80%. The level
of competition � defined in 1-3 is then � = Nv

Nv×80% = 1.25.
The Ukrainian rule thus aims at ensuring a competition level
of at least �0 = 1.25. In particular it is best to apply it when
� < �0. Since 1.25 < 2, we do not expect low prices, which
is confirmed by the simulation shown in Figure 11 where the
prices (solid orange line) are close to the real prices.

Figure 11: Evolution of the prices in the German wind on-shore
auction when acting on the level of competition using the "80%
Ukrainian rule" (dashed orange) The ceiling price is the same
as in the real German auction.

Elaborating on this idea, and taking advantage of our
finding about the critica impact of having a competition level
greater or lower than 2, the government could choose to
decrease the auctionned volume so as to reach a desired level
of competition �0 > 2when the compettion level is below 2.
This is the Ukrainian 80% rule with 1.25 replaced by �0 > 2.
To achieve a competition level �0 when the competition

level � is less than 2, we just have to auction a new volume
V ′ = �

�0
V since in that case the new competition level is

Nv
V ′ = �0 × (Nv∕V )∕� = �0 as desired. Taking e.g. �0 = 2.1
we obtain the prices (solid dark red line) shown in Figure
12. We can see that ensuring a competition level of at least
�0 = 2.1 by decreasing the auctionned volume leads as
expected to lower and more stable prices.

Figure 12: Evolution of the prices in the German wind on-
shore auction when acting on the level of competition using
the "Ukraine rule" (dashed orange) The ceiling price is the
same as in the real German auction.

Notice that increasing the level of competition from � to
�0 is achieved reducing the offered volume V down to V ′ in
proportion V ′∕V = �∕�0. Such a reduction of adjudicated
volume may be significant if the competition level � is
initially low, thus perturbing the overall RE deployment
planning. In the case of the German wind on-shore auction,
we show in Figure 13 the accumulated auctionned volume
(blue), the real accumulated adjudicated volume (orange),
and the accumulated adjudicated volume resulting from
the optimization rule to have � = �0 (green) which is
significanlty less than the auctionned volume. This problem
may however be compensated increasing the frequency of
auctions.
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Figure 13: Evolution of the accumulated volume in the
German wind on-shore auction: auctionned volume (blue), real
adjudicated volume (orange), adjudicated volume when acting
on the level of competition to enforce � = �0 = 2.1.

In this simulation we kept the ceiling price as in the real
wind on-shore German auction. In reality the ceiling price
was however computed dynamically from round to round
taking into account the results in the past rounds using the
following rule (see Sach et al. (2019)[§3.2.1]): the celing
price at round t is the mean between the maximum winning
bid price of the previous threee rounds then increased by
8%. Using this rule in our model yields however an increase
of the prices. Indeed due to the low level of competition,
most bidders wins and thus increase their bid from round to
round without upper limit. We can prevent this simply taking
the minimum between the ceiling price of round t-1 and the
new ceiing price computed with the above formula. Together
with the control of the competition level with �0 = 2.1,
we obtain the figure 14, very similar to figure 12 obtained
previously.

Figure 14: Evolution of the prices in the German wind on-
shore auction when acting on the level of competition to
ensure � ≥ 2.1 ("solid dark red). The ceiling price is adjusted
automatically from roun to round following the German rule.

Others rules for the ceiling price can be considered. For
instance in RenovAr, the ceiing price of a round was the

mean price of the previous round. We can then mix the
Argentine and German rule e.g. computing the ceiing price
of a round t as themean price of the previous round increased
by 8%, say, keeping theminimumvaluewith the ceiling price
of the previous round to ensure a decreasing ceiling price. In
that case we obtain the result shown in Figure 15 according
to which this new mixed rule for computing the ceiling price
yields prices much lower than the German rule.

Figure 15: Evolution of the prices in the German wind on-
shore auction when acting on the level of competition to
ensure � ≥ 2.1 (solid dark red). The ceiling price is adjusted
automatically from round to round as described in the text
(mix of the German and Argentine rule).

With these examples we do not pretend performing a
complete study of the impact on prices of dynamic ceiling
prices but only draw attention on the interest of controlling
the competition level by acting on the auctionned volume
together with a dynamic ceiling prices to achieve low prices.
We also want to emphasize that our model seems to be an
appropriate framework to assess the impact of these design
parameters on the prices.

7. Conclusion and Policy Implications
We proposed in this paper a simple model of a procure-

ment auction taking place in several rounds where a large
number of bidders offer at each round a fixed volume v
of energy. At each round only a given proportion 1∕� of
participants win. We can then think of � as the competition
level of the round. The participants’ bidding behaviour, i.e.,
the price they offer for a volume v, is characterized by two
parameters, namely the mean bid value � and its deviation.
From round to round, participants myopically adjust their
mean bid value � acting on their relativa mark-up (the profit
they could realize relatively to their cost and the ceiling
price): they raise it or lower it by a constant increment 
 if
they are among the winners or losers, respectively, of the
round.

Agent-based simulation shows that whatever the initial
distribution of bidders’ � parameter, they eventually coor-
dinate in the sense they end up using the same � value (up
to negligible random fuctuations) which is moreover either
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close to the ceiling price or close to the cost depending
on the level of competition. The dynamics of our model is
thus in fact essentially governed by one parameter, namely
the competition level �. Indeed the learning parameter 

only affects the time scale and � only seems to delay the
coordination. This is thus a suitable framework to study
theoretically the impact of the competition level.

It is well known in the literature and among practitioners
that the competition level among bidders is an important
factor in the success or failure of an auction with respect to
the final price (see Bulow and Klemperer (1994); Wigand
et al. (2016); Kreiss (2016)). Examining together prices and
competition level in the German wind on-shore and solar PV
auctions show indeed that a competition level of 2 seems to
be a critical threshold for th evolution of prices. Our model
confirms this empirical finding and quantifies precisely the
impact of the competition level � on the evolution of prices.
Indeed agent-based simulations show the presence of a phase
transition at � = 2: prices increase to the ceiling price when
� < 2, whereas they drop down to the true costs when � > 2.

Moreover our model can reproduce reasonably well the
trends in the evolution of prices observed in three real
auctions, namely Germany wind on-shore and solar PV, and
Argentine solar PV auctions. To our knowledge, this is the
first model of procurement auctions able to reproduce real
data.

Policy makers thus must take actions to ensure a high
enough level of competition, which is according to our
findings a ratio of at least 2 to 1 between the total volume
offered by bidders and the total volume put to auction by the
auctioneer. Several regulations can be implemented toward
that objective whose impact can be assessed with our model.
For instance simulations in the setting of the German wind
on-shore auction suggest that controlling the auctionned vol-
ume to ensure a competition level of at least �0 > 2 together
with a dynamic ceiling price (e.g taking themean of the price
of the previous round increased by some percentage) lead to
low and stable prices. Computing the ceiling price dynami-
cally has already been used and do not seem to present any
particular difficulty to implement. However modifying the
auctionned volume in view of the bidded volume is quite
uncommon and so must be handled carefully. Notice also
this kind of rule to adjust the auctionned volume presents a
clear drawback: the adjudicated volume at each round can be
significantly less than the initial planned auctionnd volume,
which can be a serious problem when the country has urgent
energetic needs. One possible solution would be to increase
the frequence of rounds.

As a final comment, we believe that the model presented
in this paper is a suitable framework to further study the-
oretically the impact of auction design parameters others
than the competition level, thus complementing existing
data-oriented literature. We will consider different kinds of
participants structured according to their economic capacity
in the spirit of Anatolitis and Welisch (2017). Also, we
considered in this paper myopic bidders only. We also plan
to incorporate to our model bidders behaving rationally

(or partially rationally) thus following the classic economic
literature on bounded rationality. The importance of the
payment mechanism and bidder’s evaluation of the project
risks are also important aspects that will be addressed in
future works.
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