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2Departamento de Matemática, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, (1428) Pabellón 1 Ciudad

Universitaria, Buenos Aires, Argentina
3CONICET - Consejo Nacional de Investigaciones Cient́ıficas y

Técnicas, Godoy Cruz 2290 (C1425FQB) CABA, Argentina

December 21th, 2021

Abstract

In this paper we propose a learning model for bidding in multi-round,
pay as bid, sealed bid auctions using techniques from partial differential
equations and statistical mechanics tools. As an application, we perform
a theoretical study of an agent based model.

We assume that in each round a fixed fraction of bidders is awarded,
and bidders learn from round to round using simple microscopic rules,
adjusting myopically their bid according to their performance. Agent-
based simulations show that bidders coordinate in the sense that they tend
to bid the same value in the long-time limit. Moreover, this common value
is the true cost or the ceiling price of the auction (for reverse auctions),
depending on the level of competition. A discontinuous phase transition
occurs when half of the bidders win.

The purpose of this paper is to introduce this theoretical methodology,
and to analyze the dynamics. After establishing the rate equations, we
obtain their continuous limit, which is a first-order, non-linear partial
differential equation. We study its solutions, we prove the existence of the
phase transition, and we explain the qualitative behavior of the solutions
observed in the agent-based simulations.

AMS Classification: 91A22, 91A26, 91A40.
Keywords: auctions, agent based models, learning, kinetic models.

∗https://www.energygreenmap.org/

1

https://www.energygreenmap.org/


1 Introduction

Auction theory is an active branch of game theory that provides us with mech-
anisms to buy or sell different goods. With a correct design, the goods can be
allocated efficiently, since the bidders with higher valuations are more likely to
obtain them.

The classical theory comprises many techniques to determine optimal bid-
ding policy in several cases, see for instance [19, 20, 24], helping the auctioneer
to estimate the result of the auction process. The radio frequency spectrum
and television channel frequency auctions in the 1980s and 1990s (see [25]) were
followed by spectrum auctions for different generations of mobile communica-
tions [17], and they generate different auction structures. Since few bidders can
compete in these very concentrated markets, they posed serious challenges of
collusive bidding, and tacit collusion was one of the risks of learning.

Meanwhile, computer science entered this world in recent decades, motivated
by word search auctions on Google, Facebook, or Amazon, to name a few, and
by online auctions at sites including eBay, Alibaba, and Mercado Libre. New,
different problems resulted: billions of online auctions are held each day, mil-
lions of words or objects are auctioned simultaneously, and thousands of agents
interact repeatedly and almost anonymously. Hence, combinatorial consider-
ations make them untractable with classical tools, and many algorithms were
developed to manage huge volumes of data, trying to understand how to bid,
see for instance the recent review [27] and the references therein.

We can think of classic auctions as a microscopic world, with individualized
bidders and goods, while online auctions occur in a high dimensional landscape,
a macroscopic world, where only trends, means, and variances are observable.
Exact computations are valid only in the first, and heuristic arguments can be
used safely in the second without precisely knowing the full details.

However, there is something in between, and some mesoscopic scale is needed.
Renewable energy (RE) auctions are very different from auctions selling words
or collectible items online, or auctions of telecommunications licenses. Few auc-
tions are held, and data is scarce due to local differences in legislation, taxes,
and credit availability. Costs and technologies change rapidly each year, par-
ticipation is expensive, and large amounts of money are at stake to learn from
experience. However, the number of bidders is high enough to prevent exact
computations, and there is a high degree of heterogeneity, since project size
can range from 0.25 MW/h to 100MW/h; bidders can be local or international
developers with high variability in credit access; and solar, wind, geothermal,
and other technologies depend heavily on the natural resources. Usually, sev-
eral rounds are held on a periodic basis, and firms clearly adapt their behavior,
reacting to other players bids.

Nowadays, RE auctions are analyzed through agent based simulations [4, 16,
22, 23]. We recently proposed in [32] a model of such auctions taking place in
several rounds where participants can adapt their strategy from round to round.
We considered a myopic learning rule where each bidder updates its strategy
considering only their performance in the round without considering its history,
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nor that of others bidders. This leads to a simple model much in the spirit of
the ones introduced by physicists to study social and economic behaviors, see
[8, 10, 34]. Despite its simplicity, agent-based simulations show that this model
can reproduce outcomes of real RE auctions reasonably well.

The main purpose of this paper is to provide a theoretical framework to
analyze learning in auctions using ordinary and partial differential equations.
We apply it to this model and explain some of the results observed in the
agent-based simulations. We first present the model and some simulations in
Section §2; briefly, each agent has a parameter µ, and submits a bid drawn
from a normal distribution N(µ, σ). We then address in Section §3 the theo-
retical analysis of the long-time behavior of the distribution of the population
in the main parameter µ ∈ [0, 1] of the model, where up to translations and
normalization, 0 represents the minimal cost, and 1 the ceiling prize. We first
discretize [0, 1] with a mesh {0, γ, 2γ, . . . , 1} of step γ, and we obtain the system
of rate equations giving the evolution of the expected proportion of bidders with
µ = 0, γ, 2γ, . . . , 1. This is a system of approximately 1/γ � 1 coupled nonlin-
ear ordinary differential equations which can provide some useful information.
To obtain better insight into the dynamic, we derive its continuous limit as
γ → 0 thus obtaining a first-order, non-local, partial differential equation. This
equation is also deduced adopting a kinetic point of view in the spirit of [26].
The solutions of this equation must be understood in a weak sense, in the space
of probability measures, which is a very flexible setting where few agents can be
considered as sums of Dirac’s delta functions.

Let us stress that the use of partial differential equations is quite unusual
in the study of auctions. They appeared recently in evolutionary game theory
generalizing the replicator systems (see [1, 2, 6, 30, 31]) when players adapt
their behavior on mixed strategies. The equation obtained is non-linear and
non-local, and thus non-trivial to study. We can nevertheless solve it in some
particular cases and then obtain the qualitative behaviour of the solutions, while
numerical methods enable us to deal with other cases.

Finally, we prove the existence of a phase transition with respect to the
competition level of the auction. It is a well known fact that participation is a
key factor in competitive auction. No amount of bargaining power is as valuable
to the seller as attracting one extra bona fide bidder, as Bulow and Klemperer
said in [7]. However, there is a lack of quantitative estimates, and we believe
that this technique can be used to obtain them in other settings. The most
technical proofs are placed in the Appendix to avoid interrupting the flow of
the paper.

2 Model description

We present in this section our model of auctions and some simulations. We
consider an auction taking place in several rounds t = 1, . . . , T involving the
same N bidders.

Remember that we are motivated by RE procurement auctions where bidders
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compete to gain the right to sell energy on a pay as bid basis, and submit their
prices, the higher the better for them (but the opposite for the auctioneer). We
suppose that whatever the round, each bidder always offer a fixed volume v of
energy, and the auctioneer always auctions the same volume V of energy where
V is supposed to be a multiple of v. The ratio Nw = V/v is thus the number of
winners in each round. We let p = Nw/N the proportion of winners, and call
ρ = 1/p the competition level.

In real auctions the auctioneer can publicly set a ceiling price, that is a
maximum accepted bid price so that any higher bid is automatically disqualified.
Up to a rescaling we can assume that the ceiling price is 1, and that bidders
know the ceiling price.

In each round, each bidder i = 1, . . . , N submits its bid bi drawn indepen-
dently at random from a normal distribution N(µi, σ

2). The noise variance σ2

is constant in time and identical for all bidders, contrary to the mean bid µi
which will change from round to round as bidders learn. We suppose that bid-
ders all have the same minimum bid value which we can assume without loss of
generality to be 0. Recalling that the ceiling price is 1, we thus truncate each
bid bi to [0, 1].

The auctioneer then sorts the bids in ascending order and the lowest Nw
bids win. Based on its result each bidder i updates its µi to µ′i raising it (or
respectively lowering it) by a fixed amount γ if he just won (or, respectively,
lost):

µ′i :=

{
min{µi + γ, 1} if bidder i won,

max{µi − γ, 0} if bidder i lost.
(2.1)

Here γ > 0 is the learning parameter, the same for every bidder and round.
Notice that µ′i is truncated to remain in [0, 1]. This rule models a myopic
behavior in the sense that bidders increase or decrease their mean bid (i.e.,
their expected profit in case of winning) only by considering how well they
performed in the round.

We can thus summarize the three steps of a round as follows:

Step 1 Bidding process: bidders independently submit their bid bi ∼ N(µi, σ
2)

truncated to remain in [0, 1].

Step 2 Determination of the winners: the auctioneer sorts the bids b1, ..., bN in
ascending order. The bidders who submitted the lowest Nw,t bids are the
winners.

Step 3 Learning: each bidder i updates her parameter µi to µ′i using (2.1).

Notice that in this simplified model of auction, p (or equivalently ρ) is the
unique parameter concerning the design of the auction and the bidding be-
haviour (i.e., the strategy) of bidder i is defined by µi. Denote ft the distribu-
tion of the parameter µ in the population at time t. It is a probability measure
over [0, 1]. Our purpose is thus to study the asymptotic behaviour of ft when
t→ +∞ as a function of the initial distribution f0 and ρ.
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It is convenient from a theoretical point of view to consider γ � 1. Ob-
servable effects then only appear when T is large. This is of course unrealistic
but it will prove very useful theoretically, especially concerning the impact of
the competition level, and will enable us to present the mean field equations of
the dynamics. Indeed, larger values of γ can be understood as a perturbation,
tracing back their effect through higher order terms in the differential equations.

Figure 1: Evolution from round to round of the µ values of bidders (blue curves)
for different noise variance σ2 and competition level ρ (left to right: ρ = 4,
ρ = 1.25, Top to Bottom: σ = 0, σ = 0.1, σ = 0.5). µ’s are initially uniformly
distributed in [0, 1] and γ = 0.001. The red points for the simulation with σ = 0
(top row) indicate the location a(t) of the Dirac mass δa(t) as given in Prop. 4
(where time is given in the τ scale, τ = γt).
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To gain intuition we first show agent-based simulations of the model. A
detailed theoretical study is presented in the next section. We consider N =
1000 bidders whose µ parameters are initially drawn at random independently
and uniformly in [0, 1] (i.e., f0 is the probability measure 1[0,1]dx). We set the
learning parameter to γ = 0.001. We show in Figure 1 the evolution from
round-to-round of the µ parameter of the N bidders for two competition level
values (left: ρ = 4, right: ρ = 1.25), and three different values of σ (from top
to bottom: σ = 0, σ = 0.1, and σ = 0.5). We can observe that bidders tend
to share asymptotically very similar µ values: close to the ceiling price 1 when
ρ = 1.25, and close to the minimum bid value 0 when ρ = 4 (as σ ↓ 0, the
fluctuations around the limit value appear to go to 0).

Further simulations (not shown here) varying the value of ρ and the initial
distribution f0 of µ’s show that bidders always coordinate and the limit common
µ value is always close to 0 or 1 depending on the value of ρ 6= 2 (equivalently
p 6= 1/2). We plot in Figure 2 the final common value of µ as a function of the
proportion of winners p = 1/ρ (averaged over 10 runs). We can clearly observe
a transition at p = 1/2 (i.e., ρ = 2): when p > 1/2 (i.e., ρ < 2), the final µ value
is close to 1, whereas it is close to 0 for p < 1/2 (i.e., ρ > 2).

Figure 2: Final common value of µ as a function of proportion of winners p = 1/ρ
for different values of noise σ.

In the next section we deduce an equation for the evolution of the distribution
ft of µ’s which will help theoretically understand this phase transition and
obtain a qualitative picture of the evolution of ft.

3 Theoretical analysis

In this section we present a theoretical analysis of the dynamic of the model
we introduced in the previous section. We want in particular to understand the
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origin of the transition phase at ρ = 2 we observed numerically in Figure 2.
Let us briefly outline the different steps of our analysis. We discretize [0, 1]

with mesh size γ � 1 which is consistent with the dynamic since µ’s are updated
by steps of size γ (see (2.1)). We take γ such that K = 1/γ ∈ N. We can then
formulate a system of ordinary differential equations, the rate equations, for the
expected proportion of bidders with µ = kγ, k = 0, . . . ,K, see system (3.2)
below. This system already provides some insight into the dynamics in some
particular cases but becomes intractable when γ ∼ 0 since it consists of ' 1/γ
equations. Passing to the continuum limit taking γ → 0 we can approximate it
by a first order partial differential equation, see equations (3.5) and (3.6) below.
We will also deduce this equation adopting a kinetic point of view. We can then
exactly solve this equation when the µ values are initially distributed uniformly
in [0, 1] thus recovering the results of the numerical simulations shown in Figure
1. We then analyze the long time behaviour of a solution starting from any
initial distribution of µ and prove the occurrence of a transition at ρ = 2, thus
explaining Figure 2.

3.1 Rate equations.

3.1.1 Deduction of the rate equations

Let us denote by nk(t) the expected proportion of bidders with µ = kγ, for
k = 1, . . . ,K, and let Fk := n0 + ... + nk be the cumulative proportion of
bidders with µ ≤ kγ, k = 0, 1, . . . ,K.

We assume for simplicity that σ = 0 so that bidders bid exactly their µ.
Denoting by p := 1/ρ the proportion of winners, we observe that a bidder with
µ = kγ ∈ [0, 1] surely wins when Fk ≤ p. When Fk > p, the agent may also
win when Fk−1 < p. Indeed in that case all bidders with µ ≤ (k − 1)γ win
but they are not enough to reach a percentage p of winners. The remaining
p− Fk−1 percentage of winners is then chosen uniformly among the nk bidders
with µ = kγ. In conclusion, a bidder with µ = kγ wins with probability

Pk := 1Fk≤p +
p− Fk−1

nk
1Fk−1<p<Fk (3.1)

(with the convention F−1 := 0). We thus obtain the following rate equations
describing the temporal evolution of n0, n1, ..., nK :

n′0(t) = −n0P0 + n1(1− P1),

n′k(t) = nk−1Pk−1 + nk+1(1− Pk+1)− nk k = 1, ...,K − 1,

n′K(t) = nK−1PK−1 − nK(1− PK).

(3.2)

These equations follow by noticing that the proportion of bidders with µ = kγ
increases due to the inflow of bidders using µ+ γ (respectively, µ− γ) who lost
(or, respectively, won) the round, and decreases due to the outflow of bidders
using µ who will end up with µ± γ 6= µ.

The next proposition states that this system has a unique global solution for
any initial condition (see Appendix for the proof):
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Proposition 1. For any initial condition (n0(0), . . . , nK(0)) with nk(0) ≥
0, k = 0, . . . ,K, and n0(0), . . . , nK(0) = 1, there exists a unique solution
(n0(t), . . . , nK(t)) to the system (3.2) which is defined for any t ∈ R and satisfies
nk(t) ≥ 0, k = 0, . . . ,K, and n0(t), . . . , nK(t) = 1 for any t ∈ R.

To verify that the rate equations (3.2) faithfully reproduce the agent-based
simulations, we solved numerically (3.2) with K = 1 + 1/0.001 (γ = 0.001) and
uniform initial condition (n0(0) = 1/(K + 1), k = 1 . . . ,K). We solved the
system in Python using the function scipy.integrate.solve_ivp and plot-
ted the solution using matplotlib.pyplot.imshow. The result is displayed in
Figure 3. We can see that the solution of the rate equations system is almost
indistinguishable from the agent-based simulations of Figure 1 (top row).

Figure 3: Evolution of the solution (n0(t), ..., nK(t)) of the rate equations system
(3.2) where K = 1 + 1/0.001 (which corresponds to γ = 0.001), with uniform
initial distribution.

3.1.2 Simple consequences of the rate equations.

We can already deduce some simple facts from the rate equations (3.2). For
instance, when p = 0, i.e., there is no winner, then Pk = 0, k = 0, ...,K, so (3.2)
becomes

n′0(t) = n1,

n′k(t) = −nk + nk+1 k = 1, . . . ,K − 1,

n′K(t) = −nK .

It follows that nK , nK−1, ..., n1 → 0 as t → +∞. Since n0 + ... + nK = 1,
we deduce that n0 → 1. Thus as t → +∞, bidders end up bidding µ = 0
(their cost) as expected. Similarly, when p = 1, all bidders win, then Pk = 1,
k = 0, . . . ,K, so

n′0(t) = −n0,
n′k(t) = −nk + nk−1 k = 1, . . . ,K − 1,

n′K(t) = nK−1.
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Then n0, n1, .., nK−1 → 0 and nK → 1. Thus as t → +∞, all bidders end up
bidding µ = 1 (the ceiling price) as expected.

We can also check by hand that when p ≤ 1/2 the configuration (1 −
p, p, 0, . . . , 0) is a stationary state (since in that case P0 = p/n0 = p/(1 − p),
P1 = 0). Moreover, a standard stability analysis based on the linearization of
the rate equation near this stationary state (see Appendix) shows it is locally
asymptotically stable if p > 1/2. Similarly (0, . . . , 0, 1 − p, p) is a stationary
state when p ≥ 1/2. which is locally asymptotically stable if p > 1/2.

In general the asymptotic behavior of (n0, . . . , nK) when p ∈ (0, 1) is not
clear due to the large number of equations in system (3.2) and their nonlinearity
through Pk. To better understand the dynamics in general it is useful to rewrite
system (3.2) as a single equation that can be approximated in the continuum
limit γ ∼ 0 by a first-order equation easier to analyze.

3.2 Continuous limit of the rate equations as γ → 0.

3.2.1 Continuous limit when σ = 0.

We first rewrite system (3.2) as a single equation for the empirical measure

ft =
∑K
k=0 nkδkγ . Here δkγ is the Dirac mass located at kγ. Then the action

of ft on a function φ, i.e., the integral of φ with respect to. the measure ft,

is given by (ft, φ) =
∫ 1

0
φ(µ)ft(dµ) =

∑K
k=0 nkφ(kγ). We can think of φ as a

macroscopic quantity we are interested in, being (ft, φ) the mean value of this

quantity at time t. For instance taking φ(µ) = µ, (ft, φ) =
∑K
k=0 nk(kγ) is the

mean value of µ.
Taking the time derivative of (ft, φ) =

∑K
k=0 nkφ(kγ) and evaluating n′k(t)

using the rate equation, we obtain through some computations (see Appendix)
that

1

γ

d

dt
(ft, φ) =ft({0})(1− P0[ft](0))(φ′(0)− γ

2
φ′′(0))

− ft({1})P0[ft](1)(φ′(1) +
γ

2
φ′′(1))

+ (ft, (2P0[ft]− 1)φ′ +
γ

2
φ′′) +O(γ2),

(3.3)

with

P0[ft](µ) :=

1Ft(µ)≤p +
p− ft([0, µ))
ft({µ})

1µ=F−1
t (p) µ ∈ (0, 1],

1ft({0})≤p +
p

ft({0})
1ft({0})>p µ = 0.

(3.4)

Here Ft : [0, 1]→ [0.1], Ft(µ) = ft([0, µ]), is the cumulative distribution function
(CdF) of ft, and F−1t is its generalized inverse defined as F−1t (r) = inf{µ ∈
[0, 1] : Ft(µ) ≥ r}, r ∈ (0, 1] (we refer to [12] for a survey of the properties of
the generalized inverse).
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Thus, upon rescaling time considering t ← γt we expect the rate equations
are well approximated in the limit γ ' 0 by the equation given in weak form by

d

dt
(ft, φ) = −ft({1})P0[ft](1)φ′(1) + ft({0})(1− P0[ft](0))φ′(0)

+ (ft, (2P0[ft]− 1)φ′)
(3.5)

The first two terms account for the truncation of µ at the boundary points 0
and 1 so that µ remains always in [0, 1]. The last term translates the learning
rule µ← µ± γ and thus drives the dynamic in (0, 1).

3.2.2 Continuous limit when σ > 0.

When σ > 0 the only change with respect to the case σ = 0 lies in the winning
probability of a bidder with µ. Indeed when σ > 0, a participant’s bid is not
exactly her µ as when σ = 0 but a random variable with distribution N(µ, σ2)
truncated to remain in [0, 1]. More precisely, denoting Φ the CdF of N(0, 1),
this truncated normal has distribution

fN(µ,σ2)|[0,1](db) :=
(

1− Φ
(1− µ

σ

))
δ1 + Φ

(
− µ

σ

)
δ0 + 1{0<b<1}fN(µ,σ2)(db)

where fN(µ,σ2) is the density of N(µ, σ2). In the limit γ → 0, the bids are then

distributed as gt,σ(db) :=
∫ 1

0
fN(µ,σ2)|[0,1](db) dft(µ). Notice this distribution is

absolutely continuous in (0, 1) with Dirac masses at 0 and 1. Denote Gt,σ(b) its
CdF and bt,σ,p = G−1t,σ(p). Then a participant bidding b wins as follows:

• if bt,σ,p = 0⇔ gt,σ({0}) ≥ p, the agent then wins if b = 0 with probability
p

gt,σ({0}) ,

• if bt,σ,p ∈ (0, 1) ⇔ gt,σ({0}) < p ≤ gt,σ([0, 1)), the agent then wins if
b ≤ bt,σ,p (since gt,σ is abs.cont in (0, 1)) with probability 1,

• if bt,σ,p = 1⇔ gt,σ([0, 1)) < p, the agent then wins if b < 1 with probability

1, and also if b = 1 with probability
p−gt,σ([0,1))
gt,σ({1}) .

Thus a bidder bidding b ∼ N(µ, σ2) truncated to remain in [0, 1] wins with
probability

Pσ[ft](µ) := 1{bt,σ,p=0}
p

gt,σ({0})
Φ
(
− µ

σ

)
+ 1{0<bt,σ,p<1}Φ

(bt,σ,p − µ
σ

)
+ 1{bt,σ,p=1}

{
Φ
(1− µ

σ

)
+
(

1− Φ
(1− µ

σ

))p− gt,σ([0, 1))

gt,σ({1})

}
.

We then obtain as before the following equation for ft:

d

dt
(ft, φ) = −ft({1})Pσ[ft](1)φ′(1) + ft({0})(1− Pσ[ft](0))φ′(0)

+ (ft, (2Pσ[ft]− 1)φ′).
(3.6)

10



Notice that in the limit σ ∼ 0, we recover (3.5) using that Φ
(
b−µ
σ

)
∼ 1µ<b,

bp,σ ∼ p. The main difference between the cases σ = 0 and σ > 0 lies in
the fact that when σ > 0 the bids are distributed according to an absolutely
continuous distribution in (0, 1) whereas, when σ = 0, the bids are the µ’s and
thus are distributed according to ft which may have Dirac masses in (0, 1). The
additional term 1µ=F−1

t (p) in P0[ft] accounts for the possibility of a Dirac mass at

F−1t (p). We will see below that this additional term is crucial to understand the
long-time behaviour of ft and is ultimately responsible for the phase transition
occurring at p = 1

2 .

3.3 A kinetic approach

We can also analyze the dynamic adopting a kinetic approach as presented
e.g. in [26]. This framework comes from the analysis of rarefied gases where
the distribution of position and velocity of the particles conforming the gas
obey the famous Boltzmann equation. This methodology has been successfuly
adapted over the last 20 years to model socio-economic problems (see [26]) and
in evolutionary game theory in [31].

In our setting, the distribution ft of parameter µ satisfies the following in-
tegrodifferential equation

d

dt

∫ 1

0

φ(µ)ft(dµ) =

∫ 1

0

E[φ(µ′]− φ(µ)] ft(dµ) (3.7)

for any φ ∈ C([0, 1[), where µ′ denotes the value of µ parameter at the end
of the round after the bidder up-dated its µ according to (2.1). Recalling that
Pσ[ft](µ) is the probability that a bidder with µ wins at time t, we have

E[φ(µ′]− φ(µ)] = [φ(min{µ+ γ, 1})− φ(µ)]Pσ[ft](µ)

+ [φ(max{µ− γ, 0})− φ(µ)](1− Pσ[ft](µ)).
(3.8)

Thus equation (3.7) characterizes the evolution of ft through the evolution of∫ 1

0
φ(µ)ft(dµ), the expected value of φ at time t, averaging over all the possible

jumps of φ due to the learning process.
An argument based on the classical Banach fixed-point theorem (see e.g., [9]

or [29]) gives

Theorem 3.1. For any initial condition f0 ∈ P ([0, 1]) there exists a unique
solution f ∈ C([0,+∞), P ([0, 1])) ∩ C1((0,+∞), P ([0, 1])) to equation (3.7).

Here P ([0, 1]) is endowed with the total variation norm defined as

‖f‖TV = sup
φ

∫ 1

0

φ(µ) f(dµ)

where the sup is taken over all φ ∈ C([0, 1]), ‖φ‖∞ ≤ 1.
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Unfortunately studying the long-time behaviour of a solution to an integro-
differential equations like (3.7) is in general not easy. A well-known procedure
in statistical mechanics called grazing limit permits approximating it by a differ-
ential equation. It consists of taking a new time scale, or equivalently, γ small,
and writing

E[φ(µ′]− φ(µ)] ≈ φ′(µ)
{

(min{µ+ γ, 1} − µ)Pσ[ft](µ)

+ (max{µ− γ, 0} − µ)(1− Pσ[ft](µ)
}
.

(3.9)

To focus on the dynamic in (0, 1), we suppose that φ is supported in (0, 1).
Then for γ small, this expression can be further simplified:

E[φ(µ′]− φ(µ)] ≈ φ′(µ)
{

((µ+ γ)− µ)Pσ[ft](µ)

+ ((µ− γ)− µ)(1− Pσ[ft](µ)
}

= γφ′(µ)(2Pσ[ft](µ)− 1).

(3.10)

Returning to (3.7) we obtain the equation

1

γ

d

dt

∫ 1

0

φ(µ)ft(dµ) =

∫ 1

0

φ′(µ)(2Pσ[ft](µ)− 1)ft(dµ) (3.11)

for any φ ∈ C1([0, 1[), Changing the time scale to t ← γt, we thus recovered
(3.6) in the limit γ → 0.

This informal derivation can be justified (see proof in Appendix):

Theorem 3.2. Given an initial condition f0 ∈ P ([0, 1]), denote fγ the unique
solution to (3.7) given by Theorem 3.1. We change the time scale to τ = γt
considering (with a slight abuse of notation) fγτ := fγt . Then there exists f ∈
C([0,+∞), P ([0, 1])) such that, along a subsequence γ → 0, fγ converges to f
in C([0, T ], P ([0, 1])) for any T > 0.

Here P ([0, 1]) is endowed with the weak convergence topology i.e., the measures

fn ∈ P ([0, 1]) converge to f ∈ P ([0, 1]) if
∫ 1

0
φ(µ)fn(dµ) →

∫ 1

0
φ(µ)f(dµ) for

any φ ∈ C([0, 1]). Notice this convergence is weaker than the TV-norm used in
Theorem 3.1.

In view of (3.11) fγτ satisfies the approximate equation

d

dτ

∫ 1

0

φ(µ)fγτ (dµ) ≈
∫ 1

0

φ′(µ)(2Pσ[fγτ ](µ)− 1)fγτ (dµ)

for φ C1 supported in (0, 1). It is tempting to pass to the limit γ → 0 to deduce
that the limit of the fγ given by Theorem 3.2. It is however not obvious to pass
to the limit γ → 0 in the right-hand side due to the low regularity of Pσ[fγτ ]
with respect to fγτ .
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3.4 Analysis of the continuous equation.

In the previous sections we deduced informally the following continuous equation
for the distribution of µ’s in the limit γ → 0:

d

dt
(ft, φ) = ft({0})(1− Pσ[ft](0))φ′(0)− ft({1})Pσ[ft](1)φ′(1)

+ (ft, (2Pσ[ft]− 1)φ′).
(3.12)

We obtained this equation as a limit of the rate equations system (3.2) and also
as an approximation of the integro-differential equation (3.7).

We study in this section the long-time behavior of the solution ft to equation
(3.12).

Let us first examine the intuitive content of each of the three terms in the
right-hand side. The first two terms with φ′(0) and φ′(1) comes from the fact
that we imposed in the updating rule that µ must remain higher than or equal
to the cost (here 0) and lower than or equal to the ceiling price (here 1). Mathe-
matically they force the solution ft to remain supported in [0, 1]. The last term
(ft, (2Pσ[ft] − 1)φ′) is the translation of the updating rule µ′ = µ ± γ, i.e., of
the learning process, and thus is the most interesting term.

When p = 1 (respectively p = 0) we already saw using the rate equations
(3.2) that all bidders end up with µ = 1 (respectively µ = 0). We can recover
this result from (3.12). Indeed Pσ ≡ 1 for σ ≥ 0 (for σ > 0 notice that bt,σ,p = 1
necessarily). Thus (3.12) becomes

d

dt
(ft, φ) = −ft({1})φ′(1) + (ft, φ

′).

Notice that when ft = δ1, the right-hand side equals 0 so that a Dirac’s mass δ1
is a stationary solution of this equation. To see that any solution ft converges
to δ1 it is enough to verify that its mean m(t) = (ft, µ) converges to 1. Taking
φ(µ) = µ we obtain m′(t) = 1 − ft({1}). Thus m′(t) > 0, i.e., m is strictly
increasing, unless ft({1}) = 1, which holds if and only if ft = δ1, that is, if and
only if m = 1. We thus obtain ft → δ1 as expected.

From now on we suppose that p ∈ (0, 1).
We begin our general study of (3.12) noticing that equation (3.12) is invari-

ant under the change (p, µ)→ (1−p, 1−µ). Indeed denoting ft the solution for
p and gt the solution for 1− p, gt is the symmetric of ft with respect to µ = 1

2
(see Appendix for the proof):

Proposition 2. Let ft be a solution of (3.12) for a proportion p of winners.
Define the measure gt by∫

φ(1− µ)gt(dµ) =

∫
φ(µ)ft(dµ) for any φ.

Then gt is solution of (3.12) for a proportion 1− p of winners.
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From now on we assume for simplicity that σ = 0 so that we study equation

d

dt
(ft, φ) = ft({0})(1− P0[ft](0))φ′(0)− ft({1})P0[ft](1)φ′(1)

+ (ft, (2P0[ft]− 1)φ′).
(3.13)

Notice that general well-posedness results for equations given in weak form
by

d

dt
(ft, φ) = (ft, v[ft]φ

′)

for any φ, i.e.,
∂tft + ∂µ(v[ft]ft) = 0,

usually requires the vector field (t, µ) → v[ft](µ) to be Lipschitz plus some
regularity of v with respect to ft (see e.g. [3]). Here however we cannot directly
apply existing results to equation (3.13) due to two difficulties. The first issues
are the boundary condition at 0 and 1, namely

ft({0})(1− P0[ft](0))φ′(0)− ft({1})P0[ft](1)φ′(1)

which have not been considered so far in the partial differential equation liter-
ature, even though the dynamics were introduced by Feller in the 1950s. The
second difficulty is the low regularity of the vector field 2P0[ft] − 1. Indeed,
rewriting the definition (3.4) of P0[ft](µ), µ ∈ (0, 1], as

P0[ft](µ) =


0 if µ > F−1t (p)

1 if µ < F−1t (p) or µ = F−1t (p), ft({µ}) = 0
p−ft([0,µ])
ft({µ}) if µ = F−1t (p), ft({µ}) > 0

we can see that P0[ft] is not even continuous. Moreover the regularity of P0[ft]
with respect to ft, required to complete the justification of the grazing limit
procedure presented before, is a delicate issue. On the other hand, two facts
are in favor of well-posedness. First equation (3.13) appeared naturally as limit
of the rate equations system (3.2) and the integro-differential equation (3.7).
Moreover P0[ft](µ) is discontinuous only at µ = F−1t (p) but is very smooth in
{µ < F−1t (p)} and in {µ > F−1t (p)}. In fact the measures f+t and f−t obtained
restricting ft to [0, F−1t (p)) and (F−1t (p), 1] respectively satisfy

d

dt
(f+t , φ) = f+t ({0})(1− P0[ft](0))φ′(0) + (f+t , φ

′)

and
d

dt
(f−t , φ) = −f−t ({1})P0[ft](1)φ′(1)− (f−t , φ

′)

as can be seen from (3.13) taking φ supported in [0, F−1t (p)) and (F−1t (p), 1].
In particular as long as F−1t (p) ∈ (0, 1), f±t are then solutions of the following
simple transport equation

∂tf
±
t ± ∂µf±t = 0

14



on the time-varying interval [0, F−1t (p)) and (F−1t (p), 1]. Notice that f+t and
f−t are transported to the right and to the left respectively at speed 1. When
mass coming from these two measures meet, a Dirac mass builds up at F−1t (p)
and moves, but it is not clear at which rate.

So we postpone the non-trivial issue of well-posedness of equation (3.13) to
a future work and will focus instead on the qualitative behavior of the solutions
assuming equation (3.13) is well-posed. The results presented in the remaining
part of the paper completely agree with the numerical simulations.

We begin by providing the exact and explicit expression of the solutions to
(3.12) for some particular initial condition. We then study the dynamic of the
mean value of µ and conclude with the qualitative study of the evolution of any
solution.

3.4.1 Exact solution for some particular cases

We can explicitly solve equation (3.13) in some particular cases. We first con-
sider the case where f0 is a Dirac mass located at a point in (0, 1). We then
consider the case where f0 is the uniform distribution over [0, 1]. In both cases
we will see that the solution goes toward δ0 or δ1 depending on whether p < 1/2
or p > 1/2. We will give the solution up to the first time T where fT = δ0 or
fT = δ1. We conclude with some remarks concerning the solution starting from
δ0 or δ1.

First when f0 is a Dirac mass at a point in (0, 1) (i.e., all bidders use the
same µ initially) then (see Appendix)

Proposition 3. If f0 = δµ(0) with µ(0) ∈ (0, 1) then the solution of (3.13) is
given by

ft = δµ(t), µ(t) = (2p− 1)t+ µ(0),

as long as µ(t) ∈ (0, 1) i.e., for t ∈ [0, T ] with T = +∞ if p = 1
2 , T = µ(0)

1−2p if

p < 1
2 , T = 1−µ(0)

2p−1 .

Notice that µ(t) increases to 1 or decreases to 0 according to whether p > 1/2
or p < 1/2, whereas it is stationary when p = 1/2.

When f0 is the uniform distribution over [0, 1], which is the case shown in
Figures 1. From these simulations we can conjecture the evolution of ft can be
decomposed into three phases. First ft becomes narrower at a constant rate
while a Dirac mass at µ = p builds up. This goes on until the mass completely
disappears on one side of δp. Then the remaining mass on the other side keeps
accumulating on the Dirac mass until ft is only a Dirac mass. From that moment
on, the evolution is the same as that given in the previous proposition. The next
result shows this intuition is correct (remember we give the solution up to the
first time T where fT = δ0 or fT = δ1).

Proposition 4. When f0 = 1 in [0, 1], the solution of (3.13) is given by
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• if p ≤ 1
4 :

ft =


1[t,1−t] + 2tδa(t),

a(t) = p 0 ≤ t ≤ p
1[a(t),1−t] + 2

√
ptδa(t),

a(t) = 2
√
pt− t, p ≤ t ≤ T := 4p.

• if 1
4 < p < 1

2 :

ft =



1[t,1−t] + 2tδa(t),

a(t) = p 0 ≤ t ≤ p
1[a(t),1−t] + (t+ a(t))δa(t),

a(t) = 2
√
pt− t, p ≤ t ≤ 1

4p ,

δa(t),

a(t) = (2p− 1)(t− 1
4p ) + 1− 1

4p ,
1
4p ≤ t ≤ T := 1

2(1−2p) .

• if p = 1
2 :

ft =


1[t,1−t] + 2tδa(t),

a(t) = p 0 ≤ t ≤ 1
2

δa(t),

a(t) = 1
2 t ≥ 1

2

• if 1
2 ≤ p ≤

3
4 :

ft =



1[t,1−t] + 2tδa(t),

a(t) = 1− p 0 ≤ t ≤ 1− p
1[t,a(t)] + 2

√
(1− p)tδa(t),

a(t) = 1− 2
√

(1− p)t+ t, 1− p ≤ t ≤ 1
4(1−p) ,

δa(t),

a(t) = −(1− 2p)(t− 1
4(1−p) ) + 1

4(1−p) ,
1

4(1−p) ≤ t ≤ T := 1
2(2p−1) .

• if 3
4 ≤ p ≤ 1:

ft =


1[t,1−t] + 2tδa(t),

a(t) = p 0 ≤ t ≤ 1− p
1[t,a(t)] + 2

√
(1− p)tδa(t),

a(t) = 1− 2
√

(1− p)t+ t, 1− p ≤ t ≤ T := 4(1− p).

The proof is given in the Appendix.
We show in figure 1 (top row) the very good agreement between agent based

simulation (blue lines) with p = 1/4 (left) and p = 0.8 (right) with µ initially
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uniformly distributed in [0, 1], and the theoretical formula above (the red points
indicates the location a(t) of the Dirac mass).

Eventually let us examine what happens near µ = 0 and µ = 1. By the
symmetry of the problem, we only need to focus on µ = 0. We already saw
with the rate equations that (1− p, p, 0, . . . , 0) is a locally asymptotically stable
stationary state when p < 1/2. This is what matters with respect to. numerical
simulations. Concerning the continuous equation, the situation is less clear.
Notice that δ0 is not a stationary state since the right-hand side of (3.13) is
P0[δ0](0)φ′(0) = pφ′(0) 6= 0. Based on the rate equations, we conjecture there
is a unique stationary state supported near 0. Though we could not find it
explicitly, notice that f = (1 − p)δ0 + pδγ is an approximate stationary state
of the continuous equation (3.13) up to an error of order γ. Indeed noticing
P0[f ](0) = p/(1− p) and P0[f ](µ) = 0, µ > 0, the right hand side of (3.13) is

f({0})P0[f ](0))φ′(0)− p(δγ , φ′) = p(φ′(0)− φ′(γ)) = O(γ).

We can mimick the linear stability analysis done for the rate equation (though
less rigorously since there is no available theory of stability for equation like
(3.13)) to show that f is locally asymptotically stable if p < 1/2 (see Appendix).
Thus when f0 = δ0 the solution ft goes to this stationary state when p < 1/2.

3.4.2 Asymptotic behavior for any initial condition.

The particular cases studied in the previous sections explains the phase transi-
tion at p = 1/2 observed in the numerical simulations when f0 is either a Dirac
mass in (0, 1) or the uniform distribution over (0, 1). Indeed in both cases, ft
converges to the stationary state located near δ0 if p < 1/2 or δ1 if p > 1/2 (the
stationary state being (1− p, p, 0, . . . , 0) and (0, . . . , 0, 1− p, p)). In this section
we will see that this true for any initial condition a give a qualitative description
of the evolution of any solution ft.

Recall that given a solution ft we denote Ft(µ) = ft([0, µ]), µ ∈ [0, 1], its
cumulative distribution function (i.e., Ft(µ) is the fraction of bidders bidding
less thn or equal to µ at time t). The generalized inverse of Ft is then F−1t (r) =
inf{µ ∈ [0, 1] : Ft(µ) ≥ r}, r ∈ (0, 1].

Given a solution ft of (3.12) with σ = 0, it is useful to study its moment.
We could find a closed equation only for the first moment m(t) =

∫
µ ft(dµ)

i.e., the mean value of µ at time t. Indeed taking φ(µ) = µ in (3.12), we obtain
the following equation for m:

m′(t) = −ft({1})P0[ft](1) + ft({0})(1− P0[ft](0)) + (ft, (2P0[ft]− 1)).

We can simplify the right-hand side to obtain (see Appendix):

m′(t) =


2p− 1 if F−1t (p) ∈ (0, 1),

p− ft({1}) if F−1t (p) = 1,

ft({0})− (1− p) if F−1t (p) = 0.

(3.14)
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Thus while F−1t (p) remains in (0, 1), m increases or decreases according to
whether p > 1/2 or p < 1/2. This is other evidence for a phase transition at
p = 1/2.

Next notice that studying the evolution of ft is equivalent to studying the
evolution of F−1t (r) for r ∈ (0, 1]. For instance F−1t (1) is the right end of supp ft
and F−1t (0+) := limr↓0 F

−1
t (r) is its left end. It turns out that studying F−1t (r)

can be simpler. Indeed since the vector field 2P0[ft](µ)− 1 ’moves’ ft in (0, 1),
according to (3.13), we have

∂tF
−1
t (r) = 2P0[ft](F

−1
t (r))− 1

while F−1t (r) ∈ (0, 1) (see, e.g., [29]). Notice in particular that if r < p < s with
F−1t (r) < F−1t (p) < F−1t (s) then P0[ft]((F

−1
t (r)) = 1 and P0[ft](F

−1
t (s)) = −1

so that
∂tF

−1
t (r) = 1 and ∂tF

−1
t (s) = −1. (3.15)

This is the mathematical translation of the fact that bidders bidding less than p
(respectively more than p) increase (respectively, decrease) their bid by γ, i.e.,
by 1 on the time scale γt (the time scale used in equation (3.13)). This is clear
on the simulations shown in Figure 1 (top row) where straight lines of slope ±1
(on the time scale γt) can be clearly seen.

We can thus obtain the following qualitative behaviour of a solution ft to
equation (3.13) starting from an initial condition f0. We assume that F−10 (p) ∈
(0, 1) so that F−10 (0+) < F−10 (p) < F−10 (1). Then by (3.15), the support
of ft shrinks around F−1t (p) up to some time T where either fT is a Dirac
mass, in which case the evolution for t ≥ T is given by Prop. 3, or fT is
supported in [F−1T (p), F−1T (1)] or [F−1T (0+), F−1T (p)]. Assume for instance that
supp fT ⊂ [F−1T (p), F−1T (1)] with F−1T (1) > F−1T (p) > 0, i.e., there is a Dirac
mass at F−1T (p) with 1 > fT ({F−1T (p)}) ≥ p (all the mass initially on the left of
F−10 (p)) collapsed to a Dirac mass). For t ≥ T , since ∂tF

−1
t (1) = −1, F−1t (1)

decreases. If p ≥ 1/2 then P0[ft](F
−1
t (p)) = p/ft({F−1t (p)}) ≥ 1/2. Thus, if

p ≥ 1/2, at some time T ′, ft becomes a Dirac mass necessarily located at m(0)
(since m(t) is constant). If p < 1/2, F−1t (1) decreases until a time T ′ where
either fT ′ is a Dirac mass in [0, 1) (whose posterior evolution is given by Prop.
3), or supp fT ′ = [0, F−1T ′ (1)] with F−1T ′ (1) > 0 i.e., fT ′({0}) ∈ (p, 1). In the
latter case, F−1t (1) keeps on decreasing until ft becomes a Dirac mas located at
a point near 0. Since p < 1/2, ft then converges to the unique stationary state
near 0 (approximately given by (1− p)δ0 + pδγ).

Summing up this analysis we proved the following the result:

Theorem 3.3. Given an initial distribution f0 of µ such that F−10 (p) ∈ (0, 1)
(i.e., f0({0}) < p and f0({1}) < 1 − p), the solution ft of (3.13) converges
to the Dirac mass δm(0) at the initial mean µ value when p = 1/2, and to the
unique stationary state near 0 (respectively, near 1) when p < 1/2 (respectively,
p > 1/2) approximately given by (1−p)δ0 +pδγ (respectively, pδ1 +(1−p)δ1−γ).
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4 Conclusion

We propose in this paper a partial differential equations analysis of learning in
auctions. We apply it a simple model of a procurement auction taking place in
several rounds where a large number of bidders offer at each round a fixed volume
v of energy. In each round only a given proportion 1/ρ of participants win. We
can then think of ρ as the competition level of the round. The participants’
bidding behavior, i.e., the price they offer for a volume v, is characterized by
two parameters, namely the mean bid value µ and its deviation. From round
to round, participants myopically adjust their mean bid value µ: they raise it
(respectively, lower it), by a constant increment γ if they are among the winners
(respectively, losers) of the round.

This model was proposed in [32] where numerical simulations showed the
presence of a phase transition at ρ = 2: prices increase to the upper limit
when ρ > 2, whereas they drop to the inferior limit when ρ < 2. In this
paper we proposed a theoretical analysis based on rate equations and their
continuous limit when γ ∼ 0. The resulting equation is a first order, non-linear,
partial differential equation for the distribution ft(dµ) in the limit γ → 0 on
the time scale γt. This equation presents unusual boundary conditions and is
quite challenging to study due to the low regularity of the vector field driving
the dynamic in (0, 1). Nevertheless it can be solved explicitly when f0 is a
Dirac mass and when it is uniform on [0, 1]. In general, rewriting it using
the generalized inverse of the cumulative distribution function of ft permits
obtaining the qualitative behaviour of ft as t→ +∞. This study confirms and
explains the phase transition numerically observed in [32].

According to this result, whatever the initial distribution of µ in the popula-
tion, the myopic learning procedure leads to an asymptotic perfect coordination
of the bidders in the sense that as time passes, they tend to share the same
value of µ. The limit value is either closed to the cost of the participants (here
0) or the ceiling price (here 1) depending on the competition level (ρ > 2 in
the first case, ρ < 2 in the second case). More precisely if there are too many
winners, more than half the number of participants, then the µ values decrease
to near the cost. On the other hand, if there are too few winners, less than half
the number of participants, then the µ values increase to near the ceiling price.

This result has concrete consequences. Indeed, it is well known in the lit-
erature concerning RE auctions that a high level of participation is crucial to
obtaining good energy prices. Our model shows that is indeed the level of com-
petition (i.e., the offered volume in relation to the auctioned volume) that really
matters. Moreover the phase transition identified at ρ = 2 precisely quantifies
the critical role played by the level of competition. Since in this study the
bidders bid approximately their µ, to guarantee good prices (i.e., low prices),
the auctioneer must set the competition level ρ > 2. Notice eventually that
the phase transition at ρ = 2 has been observed in real RE auctions (see the
discussion in [32].

As a final comment, notice that the use of partial differential equations is
uncommon in the mathematical literature on auctions theory. We believe how-
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ever that it can bring valuable insights in an evolutionary model of auctions
involving a large number of agents able to learn from round to round.
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Appendix

4.1 Well-posedness of the rate equations: proof of Prop.
1.

We first verify that the right-hand side of system (3.2) is globally Lipschitz in
(n0, . . . , nK). Indeed recalling the definition of Pk, we have for k = 1, . . . ,K−1
that

nk−1Pk−1 + nk+1(1− Pk+1)− nk (4.1)

=



nk−1 − nk if Fk+1 ≤ p,
nk−1 − nk + nk+1 − p+ Fk if Fk ≤ p < Fk+1,

nk−1 − nk + nk+1 if Fk−1 ≤ p < Fk,

p− Fk−2 − nk + nk+1 if Fk−2 ≤ p < Fk−1,

−nk + nk+1 if p < Fk−2,

Notice the right-hand side is Lipschitz being continuous in all RK+1 and linear
in regions of RK+1 delimited by hyperplanes. The same reasoning applies to

−n0P0 + n1(1− P1) =

{
−n0 if n0 + n1 ≤ p,
n1 − p if n0 + n1 > p,

(4.2)

and

nK−1PK−1 − nK(1− PK). =


nK−1 if FK ≤ p,
nK−1 − nK + p− FK−1 if FK−1 ≤ p < FK ,

p− FK−2 − nK if FK−2 ≤ p < FK−1,

−nK if p < FK−2.

(4.3)

We conclude that the right-hand side of system (3.2) is globally Lipschitz. Ac-
cording to the Cauchy-Lipschitz Theorem, system (3.2) has thus a unique solu-
tion for any initial condition which is defined for all time t ∈ R.

Consider now an initial condition such that (n0 + . . . + nK)|t=0 = 1 and
nk(0) ≥ 0, k = 0, . . . ,K. Summing all the equations in (3.2), we see that
(n0 + . . .+ nK)′ = 0 so that n0(t) + . . .+ nK(t) = 1 for any t ∈ R.

Eventually to prove that nk(t) ≥ 0 for any k = 0, . . . ,K and any t ∈ R,
it suffices to prove that the vector field defining the right-hand side of system
(3.2) points inside the orthant {n ∈ RK+1 : n0, . . . , nK ≥ 0} at any point of its
boundary, i.e., its k-th component is ≥ 0 when nk = 0 with nl ≥ 0, l 6= 0. This
is clear in view of the expressions set forth above (4.1)-(4.3).

4.2 Linear stability analysis of the rate equations.

Let us show the stationary state (1 − p, p, 0, . . . , 0) is locally asymptotically
stable for p < 1/2. Notice that if p < 1/2 i.e., 1−p > p, then in a neighborhood
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of (1 − p, p, 0, . . . , 0) we have P0 = p/n0 and Pk = 0, k ≥ 1. Thus, in that
neighborhood, the rate equations are

n′0(t) = −p+ n1,

n′1(t) = p− n1 + n2,

n′k(t) = −nk + nk+1 k = 2, . . . ,K − 1,

n′K(t) = −nK .

Notice ñ := (n1, . . . , nK) solves ñ′ = Ã + B̃ where B̃ = (p, 0, . . . , 0)T and
Ã = (ãij)i,j=1,...,K is the matrix whose coefficients are all zero except ãii = −1,
i ≥ 1, and ai,i+1 = 1, i = 1, . . . ,K − 1. Thus n1(t)→ p and n2, . . . , nK → 0 as
t→ +∞ exponentially fast. Since n1+n1+. . .+nK = 1 we deduce n0(t)→ 1−p.

4.3 Deduction of the continuous equation (3.3).

To obtain equation (3.3), we take the time derivative of (ft, φ) =
∑K
k=0 nk(t)φ(kγ)

and use the rate equation to evaluate n′k(t). We obtain

d

dt
(ft, φ) =

K∑
k=0

n′k(t)φ(kγ)

= (−n0P0 + n1(1− P1))φ(0) + (nK−1PK−1 − nK(1− PK))φ(1)

+

K−1∑
k=1

(nk−1Pk−1 + nk+1(1− Pk+1)− nk)φ(kγ)

= (n0(1− P0) + n1(1− P1))φ(0) + (nK−1PK−1 + nKPK)φ(1)

+

K−2∑
k=0

nkPkφ((k + 1)γ) +

K∑
k=2

nk(1− Pk)φ((k − 1)γ)− (ft, φ).

i.e.

d

dt
(ft, φ) = n0(1− P0)φ(0) + nKPKφ(1)− nKPKφ(1 + γ)− n0(1− P0)φ(−γ)

+

K∑
k=0

nkPkφ(kγ + γ) +

K∑
k=0

nk(1− Pk)φ(kγ − γ)− (ft, φ).

(4.4)

Notice that we can recover the equation for nk(t) simply taking φ to be zero
outside (kγ − γ/2, kγ + γ/2) and φ(kγ) = 1. Thus the whole system of rate
equations is equivalent to (4.4) for any φ.

Next to approximate this equation in the limit γ ∼ 0, we write

φ((k ± 1)γ) = φ(kγ)± φ′(kγ)γ +
γ2

2
φ′′(kγ) +O(γ3).
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Replacing in (4.4) we obtain

1

γ

d

dt
(ft, φ) = −nKPKφ′(1)− γ

2
nKPKφ

′′(1)

+n0(1− P0)φ′(0)− γ

2
n0(1− P0)φ′′(0)

+

K∑
k=0

(2Pk − 1)nkφ
′(kγ) +

γ

2
(ft, φ

′′) +O(γ2).

We deduce (3.3) rewriting the right hand side noticing that Fk = ft([0, kγ]) so
that Pk = P0[ft](kγ) where

P0[ft](µ) :=

{
1Ft(µ)≤p + p−ft([0,µ))

ft({µ}) 1µ=F−1
t (p) µ ∈ (0, 1],

1ft({0})≤p + p
ft({0})1ft({0})>p µ = 0.

Here Ft is the cumulative distribution function of ft and F−1t is its generalized
inverse defined as F−1t (r) = inf{µ ∈ [0, 1] : Ft(µ) ≥ r}, r ∈ (0, 1].

4.4 Grazing limit: proof of Thm. 3.2.

We follow the lines of [37] and [29]. From (3.7) we can write for any t > 0 and
any function φ : [0, 1]→ R 1-Lipschitz that

d

dt

∫ 1

0

φ(µ)fγt (dµ) =

∫ 1

0

E[φ(µ′)− φ(µ)]fγt (dµ)

≤
∫ 1

0

E[|µ′ − µ|]fγt (dµ).

Since |µ′ − µ| ≤ γ we always obtain

1

γ

d

dt

∫ 1

0

φ(µ)fγt (dµ) ≤ 1.

Considering the time scale τ = γt and letting fγτ := fγt with a slight abuse of
notation, we obtain

d

dτ

∫ 1

0

φ(µ)fγτ (dµ) ≤ 1.

Integrating from between τ and τ ′, we deduce∫ 1

0

φ(µ)fγτ ′(dµ)−
∫ 1

0

φ(µ)fγτ (dµ) ≤ |τ ′ − τ |.

Taking the supremum over all 1-Lipschitz function φ, we deduce

W1(fγτ ′ , f
γ
τ ) ≤ |τ ′ − τ | (4.5)
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where W1 is the Wasserstein distance over P ([0, 1]) defined as

W1(f, g) = sup
φ

∫
φ(µ) (f − g)(dµ) f, g ∈ P ([0, 1]).

It is well known that the convergence with respect to this distance is the weak
convergence. We refer to the book [38] for more details concerning Wasser-
stein distances. According to (4.5), the sequence of functions fγ : [0, T ] →
(P (]0, 1]),W1) is uniformly equicontinuous. Since P ([0, 1]) is moreover compact
for the weak convergence by Prokhorov’s theorem, we can apply the Arzelà-
Ascoli theorem to obtain a converging subsequence.

4.5 Symmetry of the solution under (p, µ)→ (1− p, 1− µ):
proof of Prop. 2.

Let ft satisfying (3.12) for a proportion p of winners, namely

d

dt
(ft, φ) = ft({0})(1− Pσ[ft](0))φ′(0)− ft({1})Pσ[ft](1)φ′(1)

+ (ft, (2Pσ[ft]− 1)φ′).
(4.6)

Define the measure gt ”flipping” ft around µ = 1
2 . Formally,∫

φ(µ)gt(dµ) =

∫
φ(1− µ)ft(dµ)

for any function φ. Taking the time derivative using (4.6) we obtain

d

dt

∫
φ(µ)gt(dµ) =

d

dt

∫
φ(1− µ)ft(dµ)

= −ft({0})(1− Pσ[ft](0))φ′(1) + ft({1})Pσ[ft](1)φ′(0)

−
∫

(2Pσ[ft](µ)− 1)φ′(1− µ)ft(dµ).

Notice that ft({0}) = ft({1}), ft({1}) = ft({0}), and Pσ[gt](1 − µ) = 1 −
Pσ[ft](µ) (where the probabilities Pσ[ft] are with p and the Pσ[gt] are with
1− p). Then

d

dt

∫
φ(µ)gt(dµ) = −gt({1})Pσ[gt](1))φ′(1) + gt({0})(1− Pσ[gt](0))φ′(0)

+

∫
(2Pσ[gt](1− µ))− 1)φ′(1− µ)ft(dµ).

We conclude noticing the last integral is
∫

(2Pσ[gt](µ))− 1)φ′(µ)gt(dµ).
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4.6 Explicit solutions to the continuous equations.

4.6.1 Proof of Prop. 3.

Looking for a solution ft = δµ(t) with µ(t) ∈ (0, 1), we have

φ′(µ(t))µ′(t) =
d

dt
(ft, φ) = (ft, (2P0[ft]− 1)φ′) = (2P0[ft](µ(t))− 1)φ′(µ(t))

i.e.
µ′(t) = 2P0[δµ(t)](µ(t))− 1 = 2p− 1.

Thus ft = δµ(t), µ(t) = (2p− 1)t+ µ(0). This computations hold until µ(t) = 0

is p < 1
2 or µ(t) = 1 if p > 1

2 .

4.6.2 Proof of Prop. 4.

The proof is a direct verification that ft solves (3.12) with σ = 0. First notice
that for any t, F−1t (p) = a(t) so that

P0[ft](µ) =


1 if µ < a(t),

0 if µ > a(t),
p−ft([0,a(t))
ft({a(t)}) if µ = a(t).

For 0 ≤ t ≤ p, (ft, φ) =
∫ 1−t
t

φ+ 2tφ(p) so that

d

dt
(ft, φ) = −φ(1− t)− φ(t) + 2φ(p).

On the other hand, notice that P0[ft](p) = 1
2 so that the right hand side of

(3.12) is

(ft, (2P0[ft]− 1)φ′) =

∫ p

t

φ′ −
∫ 1−t

o

φ′ =
d

dt
(ft, φ).

This computation holds until there is no more mass on at least one side of δa(t).

When p ≤ 1
2 (resp. p ≥ 1

2 ), this holds when 1[t,p] (resp. 1[p,1−t]) collapses to δp
which occurs at time t = p (resp. t = 1− p).

Let us examine first the case p ≤ 1
2 . For t ≥ p we look for a solution of the

form ft = 1[a(t),1−t] + (t + a(t))δa(t). Then (ft, φ) =
∫ 1−t
a(t)

φ + (t + a(t))φ(a(t))

so that
d

dt
(ft, φ) = φ(a(t))− φ(1− t) + (t+ a(t))φ′(a(t))a′(t).

On the other hand, with P0[ft](a(t)) = p
t+a(t) , the right hand side of (3.12) is

(ft, (2P0[ft]− 1)φ′) = −
∫ 1−t

a(t)

φ′ + (t+ a(t))φ′(a(t))(
2p

t+ a(t)
− 1).

Equating these two expressions, we see we must choose a satisfying a′(t) =
2p

t+a(t) − 1, t > p, with a(p) = p. Solving we obtain a(t) = 2
√
pt − t. This
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computation holds until 1[a(t),1−t] collapses to δa(t) i.e. 1 − t = a(t) ⇔ t = 1
4p ,

or a(t) = 0 ⇔ t = 4p, whatever occurs first. If 1
4 < p < 1

2 , then 1[a(t),1−t]
collapses to δa(t) before reaching 0. Then from t ≥ 1

4p , ft is a Dirac mass δa(t),

and we can use Prop. 3 i.e., a′(t) = 2p − 1. This holds until a(t) = 0 which
occurs at t = 1

2p(1−2p) .

If p ≥ 1
2 , the result follows from the case p ≤ 1

2 and Prop. 2.

4.6.3 Linear stability analysis of (1− p)δ0 + pδγ.

We provide some intuition concerning the stability of the approximate stationary
state of f = (1− p)δ) + pδγ . Consider a perturbation f̃0 = f +h0 and denote f̃t
the corresponding solution. We write f̃t = f + ht, ht = f + a(t)δ0 + b(t)δγ + gt
where gt({0}) = gt({γ}) = 0. We suppose that h0 is small in the sense that
|a(0)|, |b(0)| � 1 and

∫
h0 � 1. We take a(0) small enough so that f̃0({0}) =

1− p+a(0) > p. Then f̃t({0}) > p up to some time T . For t < T , we then have
P [f̃t](0) = p/f̃t({0}) and P [f̃t](µ) = 0 for µ > 0, so that

d

dt
(f̃t, φ) = f̃t({0})P0[f̃t](0))φ′(0) + f̃t({1})(P0[ft](1)− 1)φ′(1)

+ (f̃t − f̃t({0})− f̃t({1}), (2P0[f̃t]− 1)φ′)

= p(φ′(0)− φ′(γ))− b(t)φ′(γ)− (gt, φ
′)

Since (φ′(0)− φ′(γ) = O(γ), neglecting terms of order γ, we obtain

a′(t)φ(0) + b′(t)φ(γ) +
d

dt
(gt, φ) = −b(t)φ′(γ)− (gt, φ

′).

Thus from d
dt (gt, φ) = −(gt, φ

′), which is the weak form of the transport equation
∂tgt − ∂µgt = 0, we see that gt is transported toward the left. We can thus
reasonably assume that after some time, all the mass in gt collapsed to 0 so
that ht is approximately like ht = a(t)δ0 + b(t)δγ . Since

∫
ht = 0, we have

b(t) = −a(t). We then obtain

a′(t)φ(0)− a′(t)φ(γ) = a(t)φ′(γ)

Writing φ(γ) = φ(0) +O(γ), φ′(γ) = φ′(0) +O(γ) and neglecting terms of order
γ, we obtain a(t)φ′(0) = 0 for any φ, so that a = 0. We thus obtain ht → 0.

4.7 Evolution of the mean µ value: proof of (3.14).

The mean value m(t) =
∫
µ ft(dµ) solves the equation

m′(t) = −ft({1})P0[ft](1) + ft({0})(1− P0[ft](0)) + (ft, (2P0[ft]− 1)). (4.7)

To simplify the right-hand side we distinguish three cases: F−1t (p) = 0, 1 or
F−1t (p) ∈ (0, 1).
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If F−1t (p) = 1 then P [ft](µ) = 1µ<1 + p−ft([0,1))
ft({1}) 1µ=1. Then (4.7) becomes

m′(t) = ft([0, 1))− p+ ft({1})(2
p− ft([0, 1)

ft({1})
− 1) + ft([0, 1)) = p− ft({1}).

If F−1t (p) = 0 then P [ft](µ) = p
ft({0})1µ=0. Then (4.7) becomes

m′(t) = ft({0})
p

ft({0})
− ft((0, 1]) = p− (1− ft({0}).)

Eventually if F−1t ∈ (0, 1) then P [ft](µ) = 1µ<Xt(p) + p−ft([0,Xt(p)))
ft({Xt(p)}) 1µ=Xt(p) so

that
m′(t) = (ft, (2P0[ft]− 1)) = 2(ft, P0[ft])− 1

with (ft, P0[ft]) = ft([0, Xt(p)) + ft({Xt(p)})p−ft([0,Xt(p)))ft({Xt(p)}) = p.
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